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Phenix tools for cryo-EM



Phenix tools for cryo-EM: GUI and command line



Deposited Map Autosharpened Map

High-conductance Ca(2+)-activated K(+) channel 
(emd_8414 and PDB entry 5tji; Hite et al., 2017) 

Biso = 260Å2 Biso = 20Å2

Map	sharpening:	Examples	Automated map sharpening: phenix.auto_sharpen

EMDB: 8414, PDB: 5tji

Fully automatic:
No manual trial-and-error  |  No parameters to adjust  |  Only inputs: map and resolution



Density modification: phenix.density_modify_cryo_em

Crystallography Cryo-EM

From uninterpretable to interpretable map

Density	modification:	Crystallography	

Crystallography:	
-  Amplitudes	are	measured	quite	accurately	
-  Phases	have	large	errors	
	
Modify	phases	to	produce	a	map	most	consistent	with	
what	we	know	about	macromolecular	structures:	
•  Solvent	density	distribution	(Solvent	flattening)	
•  Atomicity	and	positivity		
•  Macromolecular	density	distributions	(histogram	

matching)	
•  Similarity	between	molecules	(symmetry	averaging)	

Density	modification:	Crystallography	

Crystallography:	
-  Amplitudes	are	measured	quite	accurately	
-  Phases	have	large	errors	
	
Modify	phases	to	produce	a	map	most	consistent	with	
what	we	know	about	macromolecular	structures:	
•  Solvent	density	distribution	(Solvent	flattening)	
•  Atomicity	and	positivity		
•  Macromolecular	density	distributions	(histogram	

matching)	
•  Similarity	between	molecules	(symmetry	averaging)	

Effect is less dramatic as in crystallography
• Can increase map resolution (0.05-0.3 Å)
• Can improve map clarity for interpretation

Testing	density	modification	

Original map, model-
sharpened 

Density-modified map, 
model-sharpened 

Testing	density	modification	

Original map, model-
sharpened 

Density-modified map, 
model-sharpened 

Similar principals for crystallography and cryo-EM: 
change the map so that it is most consistent with what we know about macromolecules 



Finding map symmetry: phenix.symmetry_from_map

http://phenix-online.org/newsletter/  
 Tools for interpreting cryo-EM maps using models from the PDB 

D2C7



Extracting unique part of map using phenix.map_box

Lots of options: use map only, use model, use symmetry, mask boxed map, and many more!

http://phenix-online.org/newsletter/  
 Tools for interpreting cryo-EM maps using models from the PDB 



Combining maps with phenix.combine_focused_maps

Focused map 
(chain B)

Target map

Composite map

A

A

B

B

B



Local resolution: phenix.local_resolution

EMDB: 20986
PDB: 6v0b

phenix.local_resolution half_map_1.mrc half_map_2.mrc

In ChimeraX load both maps and use
color sample #1 map #2 palette rainbow

to color map #1 based on the resolution values in map #2



Phenix + ChimeraX

Local EM map fitting

2.9Å

4.2Å 3.5Å

2.9Å

2.5Å

Water building into EM maps

Loop Fitting

More is coming !



Automated model building: phenix.map_to_model

Automated model building, facts:

• No automated model building produces 100% complete and 
accurate model

• Produces initial model for further manual building

• The lower the resolution, the less complete and accurate the 
auto-built model



Automated model building: phenix.map_to_model

TRPML3 channel (4.1 Å, 78% built, 1.3 Å rmsd)

Data from Zhou, X. et al. (2017) Nat. Struct. Mol. Biol. 24: 1146



Automated model building: phenix.map_to_model

Rotavirus VP6 (2.6 Å, 100% built, 0.9 Å rmsd)

Data from Grant and Grigorieff, eLife 2015;4:e06980



Manual model building steps

• Auto-sharpen the map 

• Run Map Symmetry to obtain symmetry

• Run Map Box to obtain asymmetric unit (using symmetry)

• Run Map to Model on asymmetric unit

• Run Apply NCS Operators on model, with the trim overlap 
option (supplying the full map)

If phenix.map_to_model fails or model is too big or else:



Automated water building: phenix.douse

2.9Å

4.2Å
3.5Å

2.9Å

2.5Å

Available in ChimeraX!



Sequence from map: phenix.sequence_from_mapSequence	Assignment	

Residue G A S V I L M C F Y K R W H E D Q N P T

CC 0.30 0.50 0.53 0.47 0.58 0.62 0.68 0.59 0.83 0.77 0.71 0.69 0.70 0.82 0.65 0.64 0.60 0.60 0.35 0.47

Prob 3 0 0 0 0 0 1 0 40 23 5 5 4 9 2 2 1 0 2 0

•  Determine	probability	of	side	chain	at	each	C!	
•  Align	sequence	to	maximize	total	probability	for	the	chain	



Difference maps: phenix.real_space_diff_map
!
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While! some! highEresolution! cryoEEM! maps!
may! be! of! exceptional! quality,! a! typical! cryoE
EM! map! is! still! a! lowEresolution! map! (by!
crystallography!standards,!at!least).!Therefore!
locating!and!accurately!placing!ligands!in!such!
maps! may! not! be! a! trivial! task! (figure! 1).! In!
crystallography! a! σA! scaled! mFobsEDFcalc!
difference!(or!residual)!map!is!the!tool!that!is!
used! routinely! for! locating! yet! unmodeled!
atoms.! In! cryoEEM! there! are! no! structure!
factors,! observed! Fobs! or! calculated! Fcalc,! and!
therefore! a! difference! map! cannot! be!
straightforwardly!obtained.!Naïvely,!one!could!
argue! that! it! is! possible! to! convert!
experimental! cryoEEM! map! into! structure!
factors! by! a! Fourier! transform.! Similarly,! it!
could! be! possible! to! calculate! Fcalc! from! the!
model! using! electron! formEfactors.! This! is! a!
possibility,! of! course,! but! it! is! not! without!
issues.!!The!issues!include:!!
a) Model!completeness!
b) BEfactors!inadequately!refined!
c) The! bulkEsolvent! and! scaling! protocols!

designed! for! crystallography! may! not! be!
appropriate!

d) The!map!may!contain!artifacts!left!over!from!
reconstruction! that! are! away! from! the!
molecule!and,! if!working! in! real! space,! pose!
no!issues.!!

Any!of!these!problems!may!be!a!showstopper!
if!the!map!is!calculated!using!structure!factors.!
Typically!most!of! these!problems!are!present!
when!working!with!cryoEEM!data.!Calculating!
a! difference! map! in! real! space! avoids!
problems!all!together!and!thus!should!to!be!a!
better! choice.! Furthermore,! working! with!

Figure! 1:! ATP! in! PDB!model! 5L4g! superimposed!
on!cryoEEM!map!emd_4002.!

Figure! 2:!ATP! in! PDB!model! 5L4g! in! a! difference!
density!plot!calculated!using!emd_4002.!
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5L4g, EMDB 4002

• Analogue of crystallographic Fo-Fc map

• Requires well-refined model (including B factors)



Model map

• Computing an adequate map from an atomic model is the key for:
• Refinement
• Model building
• Validation
• Ligands



Model map

• ChimeraX: (https://www.rbvi.ucsf.edu/chimerax/docs/user/commands/molmap.html)

• Each atom is a 3D Gaussian distribution of width proportional to the resolution 
and amplitude proportional to the atomic number.

• Tom Goddard (August 2025): “I don't have a paper reference, I believe I copied 
what EMAN did 20 years ago”
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here, λ is the strength of native contact potential bias. We use

10<λ<50 kJ/nm2 in our study.

2.2 Scoring Function
Tomeasure the quality of fit and bias the atomic model toward the cryo-EM

map, we used a cross-correlation function, which is introduced in earlier

publications (Gorba et al., 2008; Ratje et al., 2010). Cryo-EM reconstruc-

tions are represented by intensities on a cubic lattice stored in a vector

ρEM(k), where k is the index for grid space points in all directions. To mea-

sure the quality of fit between the map and the atomic model, a simulated

map is computed from atomic coordinates using the same grid spacing as

the experimental map and assuming a Gaussian distribution of electron

density for each atom. The simulated electron density at grid site k due to

atom j at rj is
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where 2σ is the resolution of cryo-EM map.

The similarity between the cryo-EMmap and the simulated map is com-

puted in a similar manner to MDfit with a cross-correlation function of the

form:

CCC¼

X
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X

k

ρEM kð Þ2
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ρ kð Þ2
(4)

2.3 Masking the Cryo-EM Map
In certain cases, a small region of cryo-EM electron density may correspond

to an unresolved binding factor or a highly dynamic region of the ribosome

that resides in multiple states that are difficult to separate during clustering.

502 Serdal Kirmizialtin et al.
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2σ = resolution

learning method, DiIModeler, to generate a new density map
that exclusively contains backbone atom information. DiI-
Modeler transforms the task of extracting backbone atom
information on density maps from a semantic segmentation
problem into a categorical discrete data generation problem by
combining the denoising diIusion implicit model with a U-net
network.18 Compared with other deep learning methods,
DiIModeler achieves higher accuracy in extracting backbone
atom information.
In DiIModeler, a mean-shift algorithm is used to refine the

backbone density map generated by extracting maps featuring
local representative density points from the predicted back-
bone density map. First, grid points with a density value >0 in
the backbone density map are selected. Then, the coordinates
of each grid point xi are iteratively updated based on its
neighboring grid points within 2Å. The update coordinate of xi
is
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where N represents the number of neighboring grid points in
the density map, φ(xn) represents the density value at grid
point xn, and H is a Gaussian kernel function.
In DiIModeler, H is a traditional Gaussian kernel function.

In order to improve the accuracy of the backbone density map,
we modified the Gaussian kernel function with
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where σ represents the bandwidth. This new kernel function,
by incorporation of σ3, can more accurately capture the
characteristics of the data. Moreover, it provides better
adaptability to local variations in data distribution by adjusting
the normalization through a combination of the bandwidth and
a constant.
Global Exploration for Initial Raw Poses. To obtain the

initial fitting structure, we performed a global search using the
FFT algorithm. A density map with a resolution of 3 Å,
interpolated from the original backbone density map, is utilized
to enhance computational eDciency and expedite the initial
search process. We first convert the protein structure into a
Fourier space representation and transform the density map
into the frequency domain using FFT. Then, we perform an
exhaustive search of all possible poses of the input structure in
Fourier space based on the density correlation coeDcient
(CC) between the protein structure and the density map.
Here, the CC score for each pose is defined as follows:
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where N is the number of voxels with density value larger than
the set threshold, v( )iE is the density value of the ith voxel in
the density map, E represents the average density value of the
density map, ρM(νi) is the density value of the ith voxel of the
density map generated according to the protein structure, M
is the average density value of the density map generated
according to the protein structure, and ρM(νi) is calculated as
follows:
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where xj is the Ca coordinate of the jth residue in the structure,
m represents the mass of the atom, R represents the resolution
of the density map, and vi represents the position of the ith
voxel. The parameter of

R(2.4 0.8 )2+
is chosen based on

recommendations from previously published work to optimize
the correlation between the single-Gaussian approximation and
the all-atom Gaussian density of alanine.33 For each pose, the
CC is calculated and sorted in ascending order. If the
maximum CC score is less than 0.6, then the top 20 poses are
selected for the next stage. This method takes full advantage of
the eDcient computational properties of Fourier space,
significantly improving the speed and accuracy of the global
search.

Local Exploitation for Accurate Poses. In order to
obtain better poses for the fitting, L-BFGS-based local
exploitation is further performed for the poses generated in
the global search. This step uses a density map with a voxel size
of 1 Å interpolated from the original backbone density map.
Multiple L-BFGS simulations simultaneously start from 20
nonredundant initial poses obtained in the global search phase.
Specifically, the starting poses are chosen by excluding

similar ones, identified based on the distance criterion Rmin =
max(0.85Rm, 5Å), where Rm represents the model’s radius of
gyration. Two poses are considered similar if their distance is
less than Rmin. Each selected pose is independently subjected to
an L-BFGS simulation. The CC score is used to evaluate the
pose in the simulation, with a scale factor of 5000 applied to
enhance the sensitivity. The L-BFGS simulation terminates
upon convergence or when the number of steps reaches the
maximum limit of 1000. The pose with the highest density
correlation score is selected and compared to the top-scoring
pose from the global search phase, and the pose with a higher
score is used to generate the fitting model for the next step.

Domain-Based Structure Optimization. Given that
protein structures may exhibit domain-level biases (e.g., Figure
S1), we introduce a domain-level refinement strategy to
enhance the accuracy of protein structure fitting. First, the
FUpred34 tool is used to identify domains within the structure.
The diIerential evolution (DE)35−37 algorithm is then applied
to simultaneously adjust the positions and orientations of all
domains while treating each domain as a rigid body.
Specifically, the DE algorithm is guided by a comprehensive
interdomain energy function comprising three components:
the CC score between the entire structure and the density
map, steric clashes between domains, and the connectivity
between adjacent domains. The population size for DE is set to
50, with the crossover rate and scaling factor configured as
recommended in the reference.37 The algorithm terminates
after 200 generations, and the model with the highest CC score
in the last generation is selected as the final fitted structure.

O RESULTS AND DISCUSSION
Evaluation on Experimental Structures. To validate the

performance of DEMO-EMfit and rule out the negative impact
from incorrect structures, we first test it on the benchmark set

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c00004
J. Chem. Inf. Model. 2025, 65, 3800−3811
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representative of the corresponding cluster, and then the cases in the
cluster are removed. This procedure is repeated until all the cases are
clustered. The final non-redundant set consists of the representatives
of each cluster. A total of 436 pairs of EM maps and associated PDB
structures with resolutions ranging from 3.0Å to 6.0 Å are retained.
Out of the total of 436 cases, 86 are randomly selected as the test set,
280 are randomly selected as the training set, and the remaining 70
maps are used as the validation set (Supplementary Data 11).

The initial test set consists of high-quality pairs of maps and PDB
models with CC_mask values no less than 0.75. We then further collect
a supplemental test set of entries with CC_mask values between 0.50
and 0.75. Greedy algorithm is also used to remove redundancy in the
supplemental set using 30% as the sequence identity cut-off. More-
over, we also exclude the cases in the supplemental set that have >30%
sequence identitywith any case in the abovedataset of 436 cases. After
adding 24 cases from the supplemental set, the final test set consists of
110 pairs of maps and structure models, as listed in Supplementary
Data 1. As for half-maps, a subset of 25 pairs of half-maps is used, after
excluding the cases in the test set that have no corresponding half-
maps or have severe mismatch between the map and PDB structure
(Supplementary Data 3). For individual chains, the density region
within 4.0 Å of each protein or nucleic acid chain is segmented out of
the whole primary map. Chains that have mismatch between atomic
structure anddensity volumeare excluded. The resulted set consists of
682 pairs of chains and density maps (Supplementary Data 5).

Data preprocessing
During training, validation and testing, the grid size of experimental
cryo-EMmaps is unified to 1.0 Å by applying a cubic interpolation. The
negative values for the map density are clipped at zero. The input
density boxes of EMReady are of size 48 × 48 × 48 and the output
processed boxes are of the same size. In our previous work of
EMNUSS51, we normalized the density values in each input box to the
range 0.0–1.0 by the maximum density value of each box. However,
such local normalization is not suitable for the present task since it will
introduce heterogeneity in the density amplitude for output maps.
Thus, a global normalization strategy is adopted in the present study.
Namely, we normalize the density values in each experimental map to
the range 0–1.0 by the 99.999-percentile density value of each map.
For each experimental EM density map in the training set, the target
map is simulated from its associated PDB structure. For each experi-
mental EM density map in the training set, the target density map is
simulated from its associated PDB structure with a grid interval of
1.0 Å. Namely, given a PDB structure ofM atoms, the simulated density
value ρ on grid point x is calculated by the following formula

ρðxÞ=
XM

i

θZie
#k∣x#ri ∣2 ð1Þ

where Zi and ri are the atomic number and the position vector of the
i-th heavy atom (i = 1, 2,…, M), respectively. The value of k depends
on the reported resolution R of the experimental map52, i.e.,
k = ðπ=ð1:2 +0:6RÞÞ2, and the scaling factor θ is defined as θ= ðk=πÞ1:5.

Data augmentation is adopted in the training procedure. Specifi-
cally, the EM density maps and their corresponding simulated maps
are first chunked into pairs of overlapping boxes of size 60 × 60 × 60
with strides of 30 voxels. The inputs of training are augmented by
random 90° rotations, and by randomly cropping a 48 × 48 × 48 box
from each 60 × 60 × 60 box. To ensure effective training, non-positive
boxes are excluded from training. For evaluation, the input EMdensity
map is cut into overlapping boxes of size 48× 48 × 48with strides of 12
voxels, which are then fed into the trained EMReady network. Finally,
the output boxes are re-assembled into the final processed map by
averaging the overlapping parts.

Network training
The network is implemented through Pytorch1.8.1 + cuda11.1. Two
different loss functions are adopted to calculate the difference
between predicted volume slices and target slices. One is the smooth
L1 loss, which calculates the local difference in the density values
between predicted slices and target slices. The smooth L1 loss uses a
squared term if the absolute element-wise error falls below 1.0 and an
L1 term otherwise. The smooth L1 loss between a predicted slice X and
its corresponding target slice Y is described by the following formula,

SmoothL1LossðX ,Y Þ=
XN

i = 1

XN

j = 1

XN

k = 1

li,j,k
N3 ð2Þ

whereN is the slice size (N = 48 in this study), and li,j,k is the Smooth L1
distance between X and Y at position (i, j, k) described as follows,

li,j,k =
0:5ðXi,j,k # Y i,j,kÞ

2, if ∣Xi,j,k # Y i,j,k ∣<1:0
∣Xi,j,k # Y i,j,k ∣# 0:5, otherwise

(

ð3Þ

The other is SSIM loss which measures the non-local correlation
between a predicted slice and its target slice according to their con-
trast and structure similarity. The contrast of a given slice is measured
by its standard deviation of density values. Therefore, the contrast
similarity c(X, Y) of a pair of predicted slice and corresponding target
slice can be described using the following equation,

c X ,Yð Þ=
2σXσY

σ2
X + σ2

Y
ð4Þ

where σX and σY are the standard deviations for the predicted slice X
and target slice Y, respectively. The structure similarity is the cosine
similarity between two normalized slices as follows,

s X ,Yð Þ=
1!!!!!!!!!!!!!!

N3 # 1
p X # μX

σX

 !

×
1!!!!!!!!!!!!!!

N3 # 1
p Y # μY

σY

 !

=
σXY

σXσY
ð5Þ

where μX and μY are the mean density values for X and Y, respectively,
and σXY is the covariance between X and Y. Finally, the SSIM loss is
simply given as follows,

SSIMLoss X ,Yð Þ= 1# cðX ,Y Þ× sðX ,Y Þ= 1#
2σXY + ε

σ2
X + σ2

Y + ε
ð6Þ

where ε is set to be a small constant (ε = 10−6 in this study) to prevent
dividing by zero. We simply use the sum of Smooth L1 loss and SSIM
loss as the total loss in the training. Adam optimizer is adopted to
minimize the loss. Our networks are trained with 108 boxes employed
in one batch. The initial learning rate is set to 5 × 10−4, and will be
reduced to 1/2 of its current value if the average loss on the training set
does not decrease for every 4 continuous epochs. The training pro-
cedure will be stopped at 300 epochs, or when the learning rate
reaches a minimum value of 1 × 10−5. We have carefully considered
various hyperparameters and different settings to optimize the per-
formance of our EMReady method, including using a smaller batch
size, and using regularization techniques like dropout and weight
decay. However, as shown in the evaluation results in Supplementary
Data 12 and 13 and in the training and validation loss curves in Sup-
plementary Fig. 11 (Supplementary Data 14), compared to the baseline
model, the models trained with other settings exhibit more or less
underfitting. Besides, using a smaller batch size requires a drastically
increased computation time to converge. The final choices of hyper-
parameter used in baseline model were based on empirical observa-
tions and computational efficiency. The network model with the least
loss on the validation set is used in the evaluation. During training, we
use four NVIDIA A100 GPU cards of 40GB VRAM, which can afford a

Article https://doi.org/10.1038/s41467-023-39031-1
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• CryoFit:

• Struc2mapGAN, EMReady:

k = (π / (1.2 + 0.6R))2 
Θ = (k / π)1.5
R = resolution

• DEMO-EMfit:

m = atomic mass
R = resolution

• Q-score

ARTICLESNATURE METHODS

profiles in two new maps of apoferritin with resolutions of 1.75 and 
2.32 Å, deposited as EMDB 20026 and EMDB 20027.

When calculating the profile for an atom, map values at N points 
are used to calculate the average at a particular distance, r. The N 
points are distributed evenly across the part of the sphere (centered 
at the atom, with radius r) that is closer to the atom and not any 
other atom in the model. At r = 0 or the atom center, the map value 
is duplicated N times, so that N is the same at each radial distance. In 
all calculations used here, we use N = 8. Larger values of N typically 
create smoother profiles; however, they have only minor effects on 
Q-scores described below.

The model in Fig. 1 is the X-ray model of apoferritin (Protein 
Data Bank (PDB) ID 3ajo), which was first rigidly fitted to the cryo-
EM map, and then further refined into each cryo-EM map using 
Phenix real-space refinement9. In the examples, atomic profiles 
have Gaussian-like contours. We consider a Gaussian equation of 
the form:

y ¼ Ae"
1
2

x"μ
σð Þ2 þ B ð1Þ

Gaussian functions of the form in equation (1), where x is the radial 
distance and y the average map value, fit well to the atomic profiles 
shown in Fig. 1 up to a distance of 2 Å, with a mean error of 2.4%. 
For higher resolution data, for example from X-ray crystallogra-
phy, multiple Gaussians are used to closely represent atomic form 
factors25; however, we do not consider that here. Past 2 Å from the 
atom, map profiles observed in these and other similar resolution 
cryo-EM maps become noisy and start to increase. This is likely due 
to effects from other nearby atoms and/or solvents.

When the model is well fitted to the map, the width of the 
Gaussian function (equation (1)) fitted to the profile, σ, may be con-
sidered to be proportional to factors such as the resolution of the 
map and the overall mobility of the atom. Regardless of the cause, 
in this paper we assume that the profile seen in the map indicates 
to what degree the atom is resolved: narrower profiles indicate the 
atom is better resolved, while wider profiles indicate the atom is less 
well resolved.

Q-score. The Q-score measures how similar map values around 
an atom are to a Gaussian-like function we would see if the atom 
is well resolved. Thus, to calculate it, the map values around the 

atom are compared to values from a ‘reference Gaussian’ as given by  
equation (1), with the following parameters:

μ ¼ 0 ð2Þ

A ¼ avgM þ 10σM ð3Þ

B ¼ avgM " 1σM ð4Þ

σ ¼ 0:6Å ð5Þ

In the above, the mean, μ, is set to 0, as the reference Gaussian is cen-
tered at the atom’s position. The parameters A and B are obtained 
using the mean/average across all values in the entire map, avgM, 
and the standard deviation of all values around this mean, σM. The 
width of the reference Gaussian is set as σ = 0.6. These parameters 
were chosen to make the reference Gaussian roughly match the 
atomic profile of a well-resolved atom in the 1.54 Å cryo-EM map 
as shown in Fig. 2b.

The Q-score is calculated as a correlation between two vectors: 
u, which contains map values at points around the atom, and v, 
which contains values obtained from the reference Gaussian. Points 
around the atom are taken from spheres with increasing radii, as 
shown for the atomic profiles in Fig. 1. The map value for each 
point is calculated by trilinear interpolation using map values at the 
nearest eight grid points. The corresponding reference Gaussian 
value for each point is calculated using equation (1), with x being 
the radius of the sphere from which the point is taken. The vectors 
u and v contain N × M values, where N is the number of points at 
each radial distance and M is the number of radial distances sam-
pled between 0 and 2 Å. Here N = 8, as described above for atomic 
profiles, and M = 21, with distances sampled at 0.1-Å intervals. The 
following normalized about-the-mean cross-correlation formula is 
used to compare the two vectors:

Q ¼ u" umeanh i v " vmeanh i
u" umeanj j v " vmeanj j

ð6Þ
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Fig. 1 | Atomic map profiles in cryo-EM two maps of apoferritin. a, The residue Leu26 in the fitted model (PDB 3ajo) is shown, along with contour surface 
of the cryo-EM map around this residue. Spherical shells of points centered on the CD2 atom are shown at increasing radial distances. Only points that are 
closer to the CD2 atom than to any other atom in the model are used to calculate an average map value at each radial distance. b, Plots of average map 
value versus radial distance; these are the atomic map profiles. The dotted lines represent Gaussian functions that are fitted to each profile.
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σ = 0.6
A,B ~ map mean and s.d.

https://www.rbvi.ucsf.edu/chimerax/docs/user/commands/molmap.html


Model map: two fundamental limitations

R, this term is a summation of all pairwise contacts

ENC Rð Þ¼
X

pairs i, jw dij
! "

, where

w dij
! "
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1

2
λ dij$ dij0
! "2

dij % 2dij0

1

2
λdij0 2dij$3dij0

! "
dij > 2dij0

8
><

>:
(2)

here, λ is the strength of native contact potential bias. We use

10<λ<50 kJ/nm2 in our study.

2.2 Scoring Function
Tomeasure the quality of fit and bias the atomic model toward the cryo-EM

map, we used a cross-correlation function, which is introduced in earlier

publications (Gorba et al., 2008; Ratje et al., 2010). Cryo-EM reconstruc-

tions are represented by intensities on a cubic lattice stored in a vector

ρEM(k), where k is the index for grid space points in all directions. To mea-

sure the quality of fit between the map and the atomic model, a simulated

map is computed from atomic coordinates using the same grid spacing as

the experimental map and assuming a Gaussian distribution of electron

density for each atom. The simulated electron density at grid site k due to

atom j at rj is

ρ k, rj
! "

¼ exp $1

2

rk$ rj

σ

# $2
% &

(3)

where 2σ is the resolution of cryo-EM map.

The similarity between the cryo-EMmap and the simulated map is com-

puted in a similar manner to MDfit with a cross-correlation function of the

form:

CCC¼

X

k

ρEM kð Þρ kð Þ
X

k

ρEM kð Þ2
X

k

ρ kð Þ2
(4)

2.3 Masking the Cryo-EM Map
In certain cases, a small region of cryo-EM electron density may correspond

to an unresolved binding factor or a highly dynamic region of the ribosome

that resides in multiple states that are difficult to separate during clustering.
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learning method, DiIModeler, to generate a new density map
that exclusively contains backbone atom information. DiI-
Modeler transforms the task of extracting backbone atom
information on density maps from a semantic segmentation
problem into a categorical discrete data generation problem by
combining the denoising diIusion implicit model with a U-net
network.18 Compared with other deep learning methods,
DiIModeler achieves higher accuracy in extracting backbone
atom information.
In DiIModeler, a mean-shift algorithm is used to refine the

backbone density map generated by extracting maps featuring
local representative density points from the predicted back-
bone density map. First, grid points with a density value >0 in
the backbone density map are selected. Then, the coordinates
of each grid point xi are iteratively updated based on its
neighboring grid points within 2Å. The update coordinate of xi
is

y

H x x x x

H x x x
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where N represents the number of neighboring grid points in
the density map, φ(xn) represents the density value at grid
point xn, and H is a Gaussian kernel function.
In DiIModeler, H is a traditional Gaussian kernel function.

In order to improve the accuracy of the backbone density map,
we modified the Gaussian kernel function with
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where σ represents the bandwidth. This new kernel function,
by incorporation of σ3, can more accurately capture the
characteristics of the data. Moreover, it provides better
adaptability to local variations in data distribution by adjusting
the normalization through a combination of the bandwidth and
a constant.
Global Exploration for Initial Raw Poses. To obtain the

initial fitting structure, we performed a global search using the
FFT algorithm. A density map with a resolution of 3 Å,
interpolated from the original backbone density map, is utilized
to enhance computational eDciency and expedite the initial
search process. We first convert the protein structure into a
Fourier space representation and transform the density map
into the frequency domain using FFT. Then, we perform an
exhaustive search of all possible poses of the input structure in
Fourier space based on the density correlation coeDcient
(CC) between the protein structure and the density map.
Here, the CC score for each pose is defined as follows:
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where N is the number of voxels with density value larger than
the set threshold, v( )iE is the density value of the ith voxel in
the density map, E represents the average density value of the
density map, ρM(νi) is the density value of the ith voxel of the
density map generated according to the protein structure, M
is the average density value of the density map generated
according to the protein structure, and ρM(νi) is calculated as
follows:
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where xj is the Ca coordinate of the jth residue in the structure,
m represents the mass of the atom, R represents the resolution
of the density map, and vi represents the position of the ith
voxel. The parameter of

R(2.4 0.8 )2+
is chosen based on

recommendations from previously published work to optimize
the correlation between the single-Gaussian approximation and
the all-atom Gaussian density of alanine.33 For each pose, the
CC is calculated and sorted in ascending order. If the
maximum CC score is less than 0.6, then the top 20 poses are
selected for the next stage. This method takes full advantage of
the eDcient computational properties of Fourier space,
significantly improving the speed and accuracy of the global
search.

Local Exploitation for Accurate Poses. In order to
obtain better poses for the fitting, L-BFGS-based local
exploitation is further performed for the poses generated in
the global search. This step uses a density map with a voxel size
of 1 Å interpolated from the original backbone density map.
Multiple L-BFGS simulations simultaneously start from 20
nonredundant initial poses obtained in the global search phase.
Specifically, the starting poses are chosen by excluding

similar ones, identified based on the distance criterion Rmin =
max(0.85Rm, 5Å), where Rm represents the model’s radius of
gyration. Two poses are considered similar if their distance is
less than Rmin. Each selected pose is independently subjected to
an L-BFGS simulation. The CC score is used to evaluate the
pose in the simulation, with a scale factor of 5000 applied to
enhance the sensitivity. The L-BFGS simulation terminates
upon convergence or when the number of steps reaches the
maximum limit of 1000. The pose with the highest density
correlation score is selected and compared to the top-scoring
pose from the global search phase, and the pose with a higher
score is used to generate the fitting model for the next step.

Domain-Based Structure Optimization. Given that
protein structures may exhibit domain-level biases (e.g., Figure
S1), we introduce a domain-level refinement strategy to
enhance the accuracy of protein structure fitting. First, the
FUpred34 tool is used to identify domains within the structure.
The diIerential evolution (DE)35−37 algorithm is then applied
to simultaneously adjust the positions and orientations of all
domains while treating each domain as a rigid body.
Specifically, the DE algorithm is guided by a comprehensive
interdomain energy function comprising three components:
the CC score between the entire structure and the density
map, steric clashes between domains, and the connectivity
between adjacent domains. The population size for DE is set to
50, with the crossover rate and scaling factor configured as
recommended in the reference.37 The algorithm terminates
after 200 generations, and the model with the highest CC score
in the last generation is selected as the final fitted structure.

O RESULTS AND DISCUSSION
Evaluation on Experimental Structures. To validate the

performance of DEMO-EMfit and rule out the negative impact
from incorrect structures, we first test it on the benchmark set
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representative of the corresponding cluster, and then the cases in the
cluster are removed. This procedure is repeated until all the cases are
clustered. The final non-redundant set consists of the representatives
of each cluster. A total of 436 pairs of EM maps and associated PDB
structures with resolutions ranging from 3.0Å to 6.0 Å are retained.
Out of the total of 436 cases, 86 are randomly selected as the test set,
280 are randomly selected as the training set, and the remaining 70
maps are used as the validation set (Supplementary Data 11).

The initial test set consists of high-quality pairs of maps and PDB
models with CC_mask values no less than 0.75. We then further collect
a supplemental test set of entries with CC_mask values between 0.50
and 0.75. Greedy algorithm is also used to remove redundancy in the
supplemental set using 30% as the sequence identity cut-off. More-
over, we also exclude the cases in the supplemental set that have >30%
sequence identitywith any case in the abovedataset of 436 cases. After
adding 24 cases from the supplemental set, the final test set consists of
110 pairs of maps and structure models, as listed in Supplementary
Data 1. As for half-maps, a subset of 25 pairs of half-maps is used, after
excluding the cases in the test set that have no corresponding half-
maps or have severe mismatch between the map and PDB structure
(Supplementary Data 3). For individual chains, the density region
within 4.0 Å of each protein or nucleic acid chain is segmented out of
the whole primary map. Chains that have mismatch between atomic
structure anddensity volumeare excluded. The resulted set consists of
682 pairs of chains and density maps (Supplementary Data 5).

Data preprocessing
During training, validation and testing, the grid size of experimental
cryo-EMmaps is unified to 1.0 Å by applying a cubic interpolation. The
negative values for the map density are clipped at zero. The input
density boxes of EMReady are of size 48 × 48 × 48 and the output
processed boxes are of the same size. In our previous work of
EMNUSS51, we normalized the density values in each input box to the
range 0.0–1.0 by the maximum density value of each box. However,
such local normalization is not suitable for the present task since it will
introduce heterogeneity in the density amplitude for output maps.
Thus, a global normalization strategy is adopted in the present study.
Namely, we normalize the density values in each experimental map to
the range 0–1.0 by the 99.999-percentile density value of each map.
For each experimental EM density map in the training set, the target
map is simulated from its associated PDB structure. For each experi-
mental EM density map in the training set, the target density map is
simulated from its associated PDB structure with a grid interval of
1.0 Å. Namely, given a PDB structure ofM atoms, the simulated density
value ρ on grid point x is calculated by the following formula

ρðxÞ=
XM

i

θZie
#k∣x#ri ∣2 ð1Þ

where Zi and ri are the atomic number and the position vector of the
i-th heavy atom (i = 1, 2,…, M), respectively. The value of k depends
on the reported resolution R of the experimental map52, i.e.,
k = ðπ=ð1:2 +0:6RÞÞ2, and the scaling factor θ is defined as θ= ðk=πÞ1:5.

Data augmentation is adopted in the training procedure. Specifi-
cally, the EM density maps and their corresponding simulated maps
are first chunked into pairs of overlapping boxes of size 60 × 60 × 60
with strides of 30 voxels. The inputs of training are augmented by
random 90° rotations, and by randomly cropping a 48 × 48 × 48 box
from each 60 × 60 × 60 box. To ensure effective training, non-positive
boxes are excluded from training. For evaluation, the input EMdensity
map is cut into overlapping boxes of size 48× 48 × 48with strides of 12
voxels, which are then fed into the trained EMReady network. Finally,
the output boxes are re-assembled into the final processed map by
averaging the overlapping parts.

Network training
The network is implemented through Pytorch1.8.1 + cuda11.1. Two
different loss functions are adopted to calculate the difference
between predicted volume slices and target slices. One is the smooth
L1 loss, which calculates the local difference in the density values
between predicted slices and target slices. The smooth L1 loss uses a
squared term if the absolute element-wise error falls below 1.0 and an
L1 term otherwise. The smooth L1 loss between a predicted slice X and
its corresponding target slice Y is described by the following formula,

SmoothL1LossðX ,Y Þ=
XN

i = 1

XN

j = 1

XN

k = 1

li,j,k
N3 ð2Þ

whereN is the slice size (N = 48 in this study), and li,j,k is the Smooth L1
distance between X and Y at position (i, j, k) described as follows,

li,j,k =
0:5ðXi,j,k # Y i,j,kÞ

2, if ∣Xi,j,k # Y i,j,k ∣<1:0
∣Xi,j,k # Y i,j,k ∣# 0:5, otherwise

(

ð3Þ

The other is SSIM loss which measures the non-local correlation
between a predicted slice and its target slice according to their con-
trast and structure similarity. The contrast of a given slice is measured
by its standard deviation of density values. Therefore, the contrast
similarity c(X, Y) of a pair of predicted slice and corresponding target
slice can be described using the following equation,

c X ,Yð Þ=
2σXσY

σ2
X + σ2

Y
ð4Þ

where σX and σY are the standard deviations for the predicted slice X
and target slice Y, respectively. The structure similarity is the cosine
similarity between two normalized slices as follows,

s X ,Yð Þ=
1!!!!!!!!!!!!!!

N3 # 1
p X # μX

σX

 !

×
1!!!!!!!!!!!!!!

N3 # 1
p Y # μY

σY

 !

=
σXY

σXσY
ð5Þ

where μX and μY are the mean density values for X and Y, respectively,
and σXY is the covariance between X and Y. Finally, the SSIM loss is
simply given as follows,

SSIMLoss X ,Yð Þ= 1# cðX ,Y Þ× sðX ,Y Þ= 1#
2σXY + ε

σ2
X + σ2

Y + ε
ð6Þ

where ε is set to be a small constant (ε = 10−6 in this study) to prevent
dividing by zero. We simply use the sum of Smooth L1 loss and SSIM
loss as the total loss in the training. Adam optimizer is adopted to
minimize the loss. Our networks are trained with 108 boxes employed
in one batch. The initial learning rate is set to 5 × 10−4, and will be
reduced to 1/2 of its current value if the average loss on the training set
does not decrease for every 4 continuous epochs. The training pro-
cedure will be stopped at 300 epochs, or when the learning rate
reaches a minimum value of 1 × 10−5. We have carefully considered
various hyperparameters and different settings to optimize the per-
formance of our EMReady method, including using a smaller batch
size, and using regularization techniques like dropout and weight
decay. However, as shown in the evaluation results in Supplementary
Data 12 and 13 and in the training and validation loss curves in Sup-
plementary Fig. 11 (Supplementary Data 14), compared to the baseline
model, the models trained with other settings exhibit more or less
underfitting. Besides, using a smaller batch size requires a drastically
increased computation time to converge. The final choices of hyper-
parameter used in baseline model were based on empirical observa-
tions and computational efficiency. The network model with the least
loss on the validation set is used in the evaluation. During training, we
use four NVIDIA A100 GPU cards of 40GB VRAM, which can afford a
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• Ad hoc, intuitive formulations to mimic experimental density
• No chemical element type
• No charge
• No occupancy
• No B factors (isotropic, anisotropic) 

• Resolution is not accounted for
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profiles in two new maps of apoferritin with resolutions of 1.75 and 
2.32 Å, deposited as EMDB 20026 and EMDB 20027.

When calculating the profile for an atom, map values at N points 
are used to calculate the average at a particular distance, r. The N 
points are distributed evenly across the part of the sphere (centered 
at the atom, with radius r) that is closer to the atom and not any 
other atom in the model. At r = 0 or the atom center, the map value 
is duplicated N times, so that N is the same at each radial distance. In 
all calculations used here, we use N = 8. Larger values of N typically 
create smoother profiles; however, they have only minor effects on 
Q-scores described below.

The model in Fig. 1 is the X-ray model of apoferritin (Protein 
Data Bank (PDB) ID 3ajo), which was first rigidly fitted to the cryo-
EM map, and then further refined into each cryo-EM map using 
Phenix real-space refinement9. In the examples, atomic profiles 
have Gaussian-like contours. We consider a Gaussian equation of 
the form:

y ¼ Ae"
1
2

x"μ
σð Þ2 þ B ð1Þ

Gaussian functions of the form in equation (1), where x is the radial 
distance and y the average map value, fit well to the atomic profiles 
shown in Fig. 1 up to a distance of 2 Å, with a mean error of 2.4%. 
For higher resolution data, for example from X-ray crystallogra-
phy, multiple Gaussians are used to closely represent atomic form 
factors25; however, we do not consider that here. Past 2 Å from the 
atom, map profiles observed in these and other similar resolution 
cryo-EM maps become noisy and start to increase. This is likely due 
to effects from other nearby atoms and/or solvents.

When the model is well fitted to the map, the width of the 
Gaussian function (equation (1)) fitted to the profile, σ, may be con-
sidered to be proportional to factors such as the resolution of the 
map and the overall mobility of the atom. Regardless of the cause, 
in this paper we assume that the profile seen in the map indicates 
to what degree the atom is resolved: narrower profiles indicate the 
atom is better resolved, while wider profiles indicate the atom is less 
well resolved.

Q-score. The Q-score measures how similar map values around 
an atom are to a Gaussian-like function we would see if the atom 
is well resolved. Thus, to calculate it, the map values around the 

atom are compared to values from a ‘reference Gaussian’ as given by  
equation (1), with the following parameters:

μ ¼ 0 ð2Þ

A ¼ avgM þ 10σM ð3Þ

B ¼ avgM " 1σM ð4Þ

σ ¼ 0:6Å ð5Þ

In the above, the mean, μ, is set to 0, as the reference Gaussian is cen-
tered at the atom’s position. The parameters A and B are obtained 
using the mean/average across all values in the entire map, avgM, 
and the standard deviation of all values around this mean, σM. The 
width of the reference Gaussian is set as σ = 0.6. These parameters 
were chosen to make the reference Gaussian roughly match the 
atomic profile of a well-resolved atom in the 1.54 Å cryo-EM map 
as shown in Fig. 2b.

The Q-score is calculated as a correlation between two vectors: 
u, which contains map values at points around the atom, and v, 
which contains values obtained from the reference Gaussian. Points 
around the atom are taken from spheres with increasing radii, as 
shown for the atomic profiles in Fig. 1. The map value for each 
point is calculated by trilinear interpolation using map values at the 
nearest eight grid points. The corresponding reference Gaussian 
value for each point is calculated using equation (1), with x being 
the radius of the sphere from which the point is taken. The vectors 
u and v contain N × M values, where N is the number of points at 
each radial distance and M is the number of radial distances sam-
pled between 0 and 2 Å. Here N = 8, as described above for atomic 
profiles, and M = 21, with distances sampled at 0.1-Å intervals. The 
following normalized about-the-mean cross-correlation formula is 
used to compare the two vectors:

Q ¼ u" umeanh i v " vmeanh i
u" umeanj j v " vmeanj j

ð6Þ
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Fig. 1 | Atomic map profiles in cryo-EM two maps of apoferritin. a, The residue Leu26 in the fitted model (PDB 3ajo) is shown, along with contour surface 
of the cryo-EM map around this residue. Spherical shells of points centered on the CD2 atom are shown at increasing radial distances. Only points that are 
closer to the CD2 atom than to any other atom in the model are used to calculate an average map value at each radial distance. b, Plots of average map 
value versus radial distance; these are the atomic map profiles. The dotted lines represent Gaussian functions that are fitted to each profile.
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Model map: Independent Atom Model (IAM)
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This is not the map we need for refinement, validation, model building.. 

In practice, we rarely need this map at all!

This is because it is an “infinite resolution” (exact) map, which cannot 
be meaningfully compared with the experimental map.



Model map suitable for calculations 
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Model map illustrations for Carbon atom
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Finite resolution model map calculation (Fourier map)
Exact model map 𝜌!"#! Model-calculated Fourier map "𝜌!"#!
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Finite resolution model map calculation (Fourier map)

Two problems with this approach:

1. This is a very indirect and heavy calculation

2. Resolution for all atoms is exactly the same



CryoEM: local resolution can vary a lot

Adopted from Zhang et al. Nat Methods 17, 1214–1221 (2020).
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Solution comes from this series of publications
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(see, for example, Grosse-Kunstleve et al., 2004). Due to (21),
knowledge of the atomic density for an immobile atom, with
B = 0, gives such density for an atom with a nonzero B value as
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As previously, an overline indicates the radial component of a
function that is spherically symmetric in space.

One would like to have a similar approach to atomic images
at limited resolution. When ignoring the Fourier ripples, one
can also model the peak of atomic images at the origin by a
Gaussian (see, for example, Lunin & Urzhumtsev, 1984;
Sorzano et al., 2015 and references therein; Pintilie et al., 2020).
However, the tests above show that modeling the central peak
only is insufficient to obtain accurate !d;r

direct!rÞmaps from a sum
of such terms. Chapman and coworkers (Chapman, 1995;

Chapman et al., 2013) suggested expressing atomic images
using a step-function approximation to the scattering factors
up to the chosen resolution limit. Alternatively, for an image
of an immobile atom, Bn = 0, of each required type at a given
resolution D, Urzhumtsev & Lunin (2022a) suggested its
decomposition into a sum of terms
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This function describes an image of a unit charge distributed
uniformly over a spherical surface of radius R with the
isotropic positional uncertainty described by a Gaussian
distribution with parameter B. It represents a kind of a solitary
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Figure 7
Map analysis for the test protein model. (a) Maximal relative difference as a function of the truncation distance rmax calculated at resolution D as
indicated in the image. !d

Fourier!rÞ was calculated with the PDB values of the atomic displacement parameter; the correct atomic types and the interpolated
curves from the B-grid were used to calculate !d;r

direct!rÞ. (b) Number of grid nodes with the relative map difference above the given threshold defined as a
fraction of the maximal !d

Fourier!rÞ value (0.10, 0.15 and 0.20, respectively); the numbers are given as a function of the truncation distance rmax for the maps
calculated at resolution D = 3 Å. The histogram is shown on a logarithmic scale.

Figure 8
Maps for the test protein model. Maps are calculated at resolution D = 3 Å with the correct atomic types and the B values as in the PDB file. Interpolated
curves are used for the direct map calculation. (a) Fourier map !d

Fourier!rÞ; (b) !d;r
direct!rÞ with rmax = 4 Å; (c) !d;r

direct!rÞ with rmax = 6 Å. All maps are contoured
at the 1# level. Figs. 8, 12 and 13 were prepared using PyMOL (Schrödinger).
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(see, for example, Grosse-Kunstleve et al., 2004). Due to (21),
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B = 0, gives such density for an atom with a nonzero B value as

!!!0
n!r; BÞ ¼

PK

k¼1

ak !gg!r; bk þ BÞ: !35Þ

As previously, an overline indicates the radial component of a
function that is spherically symmetric in space.

One would like to have a similar approach to atomic images
at limited resolution. When ignoring the Fourier ripples, one
can also model the peak of atomic images at the origin by a
Gaussian (see, for example, Lunin & Urzhumtsev, 1984;
Sorzano et al., 2015 and references therein; Pintilie et al., 2020).
However, the tests above show that modeling the central peak
only is insufficient to obtain accurate !d;r

direct!rÞmaps from a sum
of such terms. Chapman and coworkers (Chapman, 1995;

Chapman et al., 2013) suggested expressing atomic images
using a step-function approximation to the scattering factors
up to the chosen resolution limit. Alternatively, for an image
of an immobile atom, Bn = 0, of each required type at a given
resolution D, Urzhumtsev & Lunin (2022a) suggested its
decomposition into a sum of terms
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Figure 7
Map analysis for the test protein model. (a) Maximal relative difference as a function of the truncation distance rmax calculated at resolution D as
indicated in the image. !d

Fourier!rÞ was calculated with the PDB values of the atomic displacement parameter; the correct atomic types and the interpolated
curves from the B-grid were used to calculate !d;r

direct!rÞ. (b) Number of grid nodes with the relative map difference above the given threshold defined as a
fraction of the maximal !d

Fourier!rÞ value (0.10, 0.15 and 0.20, respectively); the numbers are given as a function of the truncation distance rmax for the maps
calculated at resolution D = 3 Å. The histogram is shown on a logarithmic scale.

Figure 8
Maps for the test protein model. Maps are calculated at resolution D = 3 Å with the correct atomic types and the B values as in the PDB file. Interpolated
curves are used for the direct map calculation. (a) Fourier map !d

Fourier!rÞ; (b) !d;r
direct!rÞ with rmax = 4 Å; (c) !d;r

direct!rÞ with rmax = 6 Å. All maps are contoured
at the 1# level. Figs. 8, 12 and 13 were prepared using PyMOL (Schrödinger).
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independent atoms unless density deformation effects become
significant. The experimental maps of these fields are distorted
images, mainly due to the limited resolution and uncertainties
in atomic positions. To be compared quantitatively with an
experimental map, a map obtained from an atomic model
should mimic these distortions. Such a map can be calculated
as a sum of independent atomic contributions considering,
respectively, both the atomic harmonic positional uncertain-
ties and the resolution cut-off of the experimental map (e.g.
Chapman, 1995; Chapman et al., 2013; DiMaio et al., 2015;
Sorzano et al., 2015, and references therein). In the simplest
case of isotropic harmonic uncertainties that we consider
below, such contributions, also referred to as atomic images in
the given map, are spherically symmetric oscillating functions.
They are composed of a peak at the origin surrounded by
‘Fourier ripples’, spatial oscillations with an amplitude which
decreases to zero much more slowly than the atomic density
itself. These functions, in particular the size and position of the
Fourier ripples, depend on the atomic type, the resolution and
the uncertainty amplitude. Modelling only the central peaks
(e.g. Lunin & Urzhumtsev, 1984) is insufficient to reproduce
the experimental map accurately (Urzhumtsev & Lunin, 2022a).

A thorough real-space refinement is required by cryoEM,
where the maps are experimental, but it is also important for
MX, even when the maps are obtained using model infor-
mation (e.g. Read, 1986).

Spherically symmetric oscillating functions in space, in
particular atomic images, can be decomposed into a sum of
terms, each represented by a specially designed spherically
symmetric analytical function (! function; see below) that
describes a distribution concentrated in a thin spherical shell
(Urzhumtsev & Lunin, 2022a). One of the main features of the
! function is that such a decomposition does not change its
form when the value of the atomic displacement parameter
changes; only one parameter value per term is changed. If a
map is calculated as a sum of atomic contributions expressed
using the ! function, each map value becomes a function of all
parameters of the atomic model, including the local resolution,
assigned now individually to every atom (Urzhumtsev &
Lunin, 2022a). This in turn assures analytical expressions for
all respective partial derivatives of the score function, which
compares the maps and rules model refinement.

In this work, we describe the algorithms and software that
realize such a shell decomposition of oscillating functions in
space, providing the decomposition coefficients that are
necessary to calculate atomic density images. In what follows,
we use the term ‘density’ for all scalar fields, as the mathe-
matical and computational tools are exactly the same what-
ever the physical meaning of the function is. The term ‘atomic
density’ is used for the density distribution of an isolated atom,
and ‘atomic image’ describes how this atomic density distri-
bution looks in a given map, i.e. considering both isotropic
harmonic uncertainties in atomic positions and the resolution
cut-off. These algorithms and programs can be used directly to
calculate and manipulate atomic images in different projects,
to develop methods and software using molecular maps, and
for various teaching purposes.

2. Algorithms

2.1. General considerations

Introducing an isotropic harmonic positional disorder blurs
the atomic density. This effect may be described by the
mathematical operation of convolution, denoted by an
asterisk, ! (Appendix A), of the theoretical density distribu-
tion of the atom with the normalized Gaussian function,

gðr; BÞ ¼ 4!

B

! "3=2

exp % 4!2jrj2

B

! "
: ð1Þ

Function (1) of the positional vector r also depends on the
atomic displacement factor B which describes the amplitude of
the positional uncertainty. For the simplest model of atoms
independent of their environment, the density "0(r) of an
immobile atom placed at the origin is a spherically symmetric
function with a peak at the origin that decreases mono-
tonically and quite sharply with distance from the origin.
Traditionally, it is decomposed into a linear combination of
Gaussian functions (e.g. Doyle & Turner, 1968),

"0ðrÞ ’
PM"

m¼1

cmgðr; bmÞ; ð2Þ

where cm and bm are tabulated values. This allows one to use
the convolution property of the Gaussian function,

gðr; BÞ ! gðr; B0Þ ¼ gðr; Bþ B0Þ; ð3Þ

to express the atomic density analytically for any B0 value.
Atomic density images obtained with a resolution cut-off

are blurred further, and the central peak of such an image is
surrounded by Fourier ripples. To represent an oscillating
spherically symmetric function f(r) in space, we recently
suggested the decomposition

f ðrÞ ’
PM

m¼1

Cm!ðr; Rm;BmÞ ð4Þ

with specially designed two-parameter functions in space,

!ðr; R;BÞ ¼ 1

jrjR
1

4!B

! "1=2#
exp % 4!2ðjrj% RÞ2

B

$ %

% exp % 4!2ðjrjþ RÞ2

B

$ %&
ð5Þ

(Urzhumtsev & Lunin, 2022a). The function !ðr; R;BÞ
represents a spherically symmetric solitary wave in three-
dimensional space (Fig. 1). It can be thought of as the density
of a virtual unit charge, distributed uniformly on a spherical
surface of radius R and blurred with an uncertainty char-
acterized by the parameter B. Decomposition (2) is a parti-
cular case of decomposition (4) of atomic images, because
(Appendix B)

gðr; BÞ ¼ lim
R!0

!ðr; R;BÞ: ð6Þ

In what follows, we use the term ‘shell decomposition’ for
decomposition (4). An important feature of function (5) is its
‘uncertainty transferability’ which is similar to (3),

computer programs

J. Appl. Cryst. (2023). 56, 302–311 Ludmila Urzhumtseva et al. ' Shell decomposition of oscillating functions 303
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independent atoms unless density deformation effects become
significant. The experimental maps of these fields are distorted
images, mainly due to the limited resolution and uncertainties
in atomic positions. To be compared quantitatively with an
experimental map, a map obtained from an atomic model
should mimic these distortions. Such a map can be calculated
as a sum of independent atomic contributions considering,
respectively, both the atomic harmonic positional uncertain-
ties and the resolution cut-off of the experimental map (e.g.
Chapman, 1995; Chapman et al., 2013; DiMaio et al., 2015;
Sorzano et al., 2015, and references therein). In the simplest
case of isotropic harmonic uncertainties that we consider
below, such contributions, also referred to as atomic images in
the given map, are spherically symmetric oscillating functions.
They are composed of a peak at the origin surrounded by
‘Fourier ripples’, spatial oscillations with an amplitude which
decreases to zero much more slowly than the atomic density
itself. These functions, in particular the size and position of the
Fourier ripples, depend on the atomic type, the resolution and
the uncertainty amplitude. Modelling only the central peaks
(e.g. Lunin & Urzhumtsev, 1984) is insufficient to reproduce
the experimental map accurately (Urzhumtsev & Lunin, 2022a).

A thorough real-space refinement is required by cryoEM,
where the maps are experimental, but it is also important for
MX, even when the maps are obtained using model infor-
mation (e.g. Read, 1986).

Spherically symmetric oscillating functions in space, in
particular atomic images, can be decomposed into a sum of
terms, each represented by a specially designed spherically
symmetric analytical function (! function; see below) that
describes a distribution concentrated in a thin spherical shell
(Urzhumtsev & Lunin, 2022a). One of the main features of the
! function is that such a decomposition does not change its
form when the value of the atomic displacement parameter
changes; only one parameter value per term is changed. If a
map is calculated as a sum of atomic contributions expressed
using the ! function, each map value becomes a function of all
parameters of the atomic model, including the local resolution,
assigned now individually to every atom (Urzhumtsev &
Lunin, 2022a). This in turn assures analytical expressions for
all respective partial derivatives of the score function, which
compares the maps and rules model refinement.

In this work, we describe the algorithms and software that
realize such a shell decomposition of oscillating functions in
space, providing the decomposition coefficients that are
necessary to calculate atomic density images. In what follows,
we use the term ‘density’ for all scalar fields, as the mathe-
matical and computational tools are exactly the same what-
ever the physical meaning of the function is. The term ‘atomic
density’ is used for the density distribution of an isolated atom,
and ‘atomic image’ describes how this atomic density distri-
bution looks in a given map, i.e. considering both isotropic
harmonic uncertainties in atomic positions and the resolution
cut-off. These algorithms and programs can be used directly to
calculate and manipulate atomic images in different projects,
to develop methods and software using molecular maps, and
for various teaching purposes.

2. Algorithms

2.1. General considerations

Introducing an isotropic harmonic positional disorder blurs
the atomic density. This effect may be described by the
mathematical operation of convolution, denoted by an
asterisk, ! (Appendix A), of the theoretical density distribu-
tion of the atom with the normalized Gaussian function,

gðr; BÞ ¼ 4!
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Function (1) of the positional vector r also depends on the
atomic displacement factor B which describes the amplitude of
the positional uncertainty. For the simplest model of atoms
independent of their environment, the density "0(r) of an
immobile atom placed at the origin is a spherically symmetric
function with a peak at the origin that decreases mono-
tonically and quite sharply with distance from the origin.
Traditionally, it is decomposed into a linear combination of
Gaussian functions (e.g. Doyle & Turner, 1968),

"0ðrÞ ’
PM"

m¼1

cmgðr; bmÞ; ð2Þ

where cm and bm are tabulated values. This allows one to use
the convolution property of the Gaussian function,

gðr; BÞ ! gðr; B0Þ ¼ gðr; Bþ B0Þ; ð3Þ

to express the atomic density analytically for any B0 value.
Atomic density images obtained with a resolution cut-off

are blurred further, and the central peak of such an image is
surrounded by Fourier ripples. To represent an oscillating
spherically symmetric function f(r) in space, we recently
suggested the decomposition

f ðrÞ ’
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with specially designed two-parameter functions in space,
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(Urzhumtsev & Lunin, 2022a). The function !ðr; R;BÞ
represents a spherically symmetric solitary wave in three-
dimensional space (Fig. 1). It can be thought of as the density
of a virtual unit charge, distributed uniformly on a spherical
surface of radius R and blurred with an uncertainty char-
acterized by the parameter B. Decomposition (2) is a parti-
cular case of decomposition (4) of atomic images, because
(Appendix B)

gðr; BÞ ¼ lim
R!0

!ðr; R;BÞ: ð6Þ

In what follows, we use the term ‘shell decomposition’ for
decomposition (4). An important feature of function (5) is its
‘uncertainty transferability’ which is similar to (3),

computer programs
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Practicalities
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(see, for example, Grosse-Kunstleve et al., 2004). Due to (21),
knowledge of the atomic density for an immobile atom, with
B = 0, gives such density for an atom with a nonzero B value as

!!!0
n!r; BÞ ¼

PK

k¼1

ak !gg!r; bk þ BÞ: !35Þ

As previously, an overline indicates the radial component of a
function that is spherically symmetric in space.

One would like to have a similar approach to atomic images
at limited resolution. When ignoring the Fourier ripples, one
can also model the peak of atomic images at the origin by a
Gaussian (see, for example, Lunin & Urzhumtsev, 1984;
Sorzano et al., 2015 and references therein; Pintilie et al., 2020).
However, the tests above show that modeling the central peak
only is insufficient to obtain accurate !d;r

direct!rÞmaps from a sum
of such terms. Chapman and coworkers (Chapman, 1995;

Chapman et al., 2013) suggested expressing atomic images
using a step-function approximation to the scattering factors
up to the chosen resolution limit. Alternatively, for an image
of an immobile atom, Bn = 0, of each required type at a given
resolution D, Urzhumtsev & Lunin (2022a) suggested its
decomposition into a sum of terms
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expressed through the specially designed function
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This function describes an image of a unit charge distributed
uniformly over a spherical surface of radius R with the
isotropic positional uncertainty described by a Gaussian
distribution with parameter B. It represents a kind of a solitary
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Figure 7
Map analysis for the test protein model. (a) Maximal relative difference as a function of the truncation distance rmax calculated at resolution D as
indicated in the image. !d

Fourier!rÞ was calculated with the PDB values of the atomic displacement parameter; the correct atomic types and the interpolated
curves from the B-grid were used to calculate !d;r

direct!rÞ. (b) Number of grid nodes with the relative map difference above the given threshold defined as a
fraction of the maximal !d

Fourier!rÞ value (0.10, 0.15 and 0.20, respectively); the numbers are given as a function of the truncation distance rmax for the maps
calculated at resolution D = 3 Å. The histogram is shown on a logarithmic scale.

Figure 8
Maps for the test protein model. Maps are calculated at resolution D = 3 Å with the correct atomic types and the B values as in the PDB file. Interpolated
curves are used for the direct map calculation. (a) Fourier map !d

Fourier!rÞ; (b) !d;r
direct!rÞ with rmax = 4 Å; (c) !d;r

direct!rÞ with rmax = 6 Å. All maps are contoured
at the 1# level. Figs. 8, 12 and 13 were prepared using PyMOL (Schrödinger).

 s20597983, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1107/S2059798322010907 by U

niv of C
alifornia Law

rence B
erkeley N

ational Lab, W
iley O

nline Library on [19/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

!!!0
n!r; 0Þ ¼

PK

k¼1

ak !gg!r; bkÞ; !ff 0
n !s; 0Þ ¼

PK

k¼1

ak exp!$bks2=4Þ

!34Þ

(see, for example, Grosse-Kunstleve et al., 2004). Due to (21),
knowledge of the atomic density for an immobile atom, with
B = 0, gives such density for an atom with a nonzero B value as
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As previously, an overline indicates the radial component of a
function that is spherically symmetric in space.

One would like to have a similar approach to atomic images
at limited resolution. When ignoring the Fourier ripples, one
can also model the peak of atomic images at the origin by a
Gaussian (see, for example, Lunin & Urzhumtsev, 1984;
Sorzano et al., 2015 and references therein; Pintilie et al., 2020).
However, the tests above show that modeling the central peak
only is insufficient to obtain accurate !d;r

direct!rÞmaps from a sum
of such terms. Chapman and coworkers (Chapman, 1995;

Chapman et al., 2013) suggested expressing atomic images
using a step-function approximation to the scattering factors
up to the chosen resolution limit. Alternatively, for an image
of an immobile atom, Bn = 0, of each required type at a given
resolution D, Urzhumtsev & Lunin (2022a) suggested its
decomposition into a sum of terms
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This function describes an image of a unit charge distributed
uniformly over a spherical surface of radius R with the
isotropic positional uncertainty described by a Gaussian
distribution with parameter B. It represents a kind of a solitary

research papers

Acta Cryst. (2022). D78, 1451–1468 Alexandre G. Urzhumtsev et al. & Model maps for real-space refinement 1461

Figure 7
Map analysis for the test protein model. (a) Maximal relative difference as a function of the truncation distance rmax calculated at resolution D as
indicated in the image. !d

Fourier!rÞ was calculated with the PDB values of the atomic displacement parameter; the correct atomic types and the interpolated
curves from the B-grid were used to calculate !d;r

direct!rÞ. (b) Number of grid nodes with the relative map difference above the given threshold defined as a
fraction of the maximal !d

Fourier!rÞ value (0.10, 0.15 and 0.20, respectively); the numbers are given as a function of the truncation distance rmax for the maps
calculated at resolution D = 3 Å. The histogram is shown on a logarithmic scale.

Figure 8
Maps for the test protein model. Maps are calculated at resolution D = 3 Å with the correct atomic types and the B values as in the PDB file. Interpolated
curves are used for the direct map calculation. (a) Fourier map !d

Fourier!rÞ; (b) !d;r
direct!rÞ with rmax = 4 Å; (c) !d;r

direct!rÞ with rmax = 6 Å. All maps are contoured
at the 1# level. Figs. 8, 12 and 13 were prepared using PyMOL (Schrödinger).
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independent atoms unless density deformation effects become
significant. The experimental maps of these fields are distorted
images, mainly due to the limited resolution and uncertainties
in atomic positions. To be compared quantitatively with an
experimental map, a map obtained from an atomic model
should mimic these distortions. Such a map can be calculated
as a sum of independent atomic contributions considering,
respectively, both the atomic harmonic positional uncertain-
ties and the resolution cut-off of the experimental map (e.g.
Chapman, 1995; Chapman et al., 2013; DiMaio et al., 2015;
Sorzano et al., 2015, and references therein). In the simplest
case of isotropic harmonic uncertainties that we consider
below, such contributions, also referred to as atomic images in
the given map, are spherically symmetric oscillating functions.
They are composed of a peak at the origin surrounded by
‘Fourier ripples’, spatial oscillations with an amplitude which
decreases to zero much more slowly than the atomic density
itself. These functions, in particular the size and position of the
Fourier ripples, depend on the atomic type, the resolution and
the uncertainty amplitude. Modelling only the central peaks
(e.g. Lunin & Urzhumtsev, 1984) is insufficient to reproduce
the experimental map accurately (Urzhumtsev & Lunin, 2022a).

A thorough real-space refinement is required by cryoEM,
where the maps are experimental, but it is also important for
MX, even when the maps are obtained using model infor-
mation (e.g. Read, 1986).

Spherically symmetric oscillating functions in space, in
particular atomic images, can be decomposed into a sum of
terms, each represented by a specially designed spherically
symmetric analytical function (! function; see below) that
describes a distribution concentrated in a thin spherical shell
(Urzhumtsev & Lunin, 2022a). One of the main features of the
! function is that such a decomposition does not change its
form when the value of the atomic displacement parameter
changes; only one parameter value per term is changed. If a
map is calculated as a sum of atomic contributions expressed
using the ! function, each map value becomes a function of all
parameters of the atomic model, including the local resolution,
assigned now individually to every atom (Urzhumtsev &
Lunin, 2022a). This in turn assures analytical expressions for
all respective partial derivatives of the score function, which
compares the maps and rules model refinement.

In this work, we describe the algorithms and software that
realize such a shell decomposition of oscillating functions in
space, providing the decomposition coefficients that are
necessary to calculate atomic density images. In what follows,
we use the term ‘density’ for all scalar fields, as the mathe-
matical and computational tools are exactly the same what-
ever the physical meaning of the function is. The term ‘atomic
density’ is used for the density distribution of an isolated atom,
and ‘atomic image’ describes how this atomic density distri-
bution looks in a given map, i.e. considering both isotropic
harmonic uncertainties in atomic positions and the resolution
cut-off. These algorithms and programs can be used directly to
calculate and manipulate atomic images in different projects,
to develop methods and software using molecular maps, and
for various teaching purposes.

2. Algorithms

2.1. General considerations

Introducing an isotropic harmonic positional disorder blurs
the atomic density. This effect may be described by the
mathematical operation of convolution, denoted by an
asterisk, ! (Appendix A), of the theoretical density distribu-
tion of the atom with the normalized Gaussian function,

gðr; BÞ ¼ 4!

B

! "3=2

exp % 4!2jrj2

B

! "
: ð1Þ

Function (1) of the positional vector r also depends on the
atomic displacement factor B which describes the amplitude of
the positional uncertainty. For the simplest model of atoms
independent of their environment, the density "0(r) of an
immobile atom placed at the origin is a spherically symmetric
function with a peak at the origin that decreases mono-
tonically and quite sharply with distance from the origin.
Traditionally, it is decomposed into a linear combination of
Gaussian functions (e.g. Doyle & Turner, 1968),

"0ðrÞ ’
PM"

m¼1

cmgðr; bmÞ; ð2Þ

where cm and bm are tabulated values. This allows one to use
the convolution property of the Gaussian function,

gðr; BÞ ! gðr; B0Þ ¼ gðr; Bþ B0Þ; ð3Þ

to express the atomic density analytically for any B0 value.
Atomic density images obtained with a resolution cut-off

are blurred further, and the central peak of such an image is
surrounded by Fourier ripples. To represent an oscillating
spherically symmetric function f(r) in space, we recently
suggested the decomposition

f ðrÞ ’
PM

m¼1

Cm!ðr; Rm;BmÞ ð4Þ

with specially designed two-parameter functions in space,

!ðr; R;BÞ ¼ 1

jrjR
1

4!B

! "1=2#
exp % 4!2ðjrj% RÞ2

B

$ %

% exp % 4!2ðjrjþ RÞ2

B

$ %&
ð5Þ

(Urzhumtsev & Lunin, 2022a). The function !ðr; R;BÞ
represents a spherically symmetric solitary wave in three-
dimensional space (Fig. 1). It can be thought of as the density
of a virtual unit charge, distributed uniformly on a spherical
surface of radius R and blurred with an uncertainty char-
acterized by the parameter B. Decomposition (2) is a parti-
cular case of decomposition (4) of atomic images, because
(Appendix B)

gðr; BÞ ¼ lim
R!0

!ðr; R;BÞ: ð6Þ

In what follows, we use the term ‘shell decomposition’ for
decomposition (4). An important feature of function (5) is its
‘uncertainty transferability’ which is similar to (3),

computer programs
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• Precompute and tabulate B, C and R constants for all atoms from 
Periodic Table and all resolutions

• This is done by fitting to actual Fourier maps

• To calculate the map, assign resolution to each atom in your model, 
then look up its parameters in precomputed tables, and compute 
the map 

𝜌!"#! =



What can we do with this?

Fourier maps can be computed analytically for a model, allowing different 
atoms or regions (chains, domains, loops, etc.) to have distinct resolutions

1.5 Å resolution

4 Å resolution



What can we do with this?

• Difference maps (aka Fo-Fc in Xtal) can be calculated more accurately

• Refinement:
• Analytic derivatives w.r.t. coordinates, occupancies, B factors
• More accurate refinement target function
• Local resolution aware

• Validation: CCMASK aware of local resolution

• AI/ML based model building, ligand identification:
• Fast and accurate generation of realistic density maps of given 

resolution for training purposes

• Accurate map-to-model fit evaluation (rotamer fitting)


