

UTMB, October 2025

Phenix Introduction

Dorothee Liebschner
Lawrence Berkeley Laboratory

Time	Agenda					
8:30	Welcome/What's new in Phenix (20 min)					
8:50	Overview: Using AlphaFold models in Phenix (30 min)					
9:20	Tutorial: AF model prediction with Phenix (20 min)					
9:40	Overview of map tools in Phenix (35 min)					
10:15	15 min break					
10:30	Tutorial: map symmetry, mapBox, docking, apply symmetry (50 min)					
11:30	Tutorial: Phenix tools in ChimeraX (40 min)					
12:00	1 hour lunch break; on-on-one discussions					
13:30	Refinement & validation (90 min)					
15:00	15 min break					
15:15	Tutorial: phenix.real_space_refine (30 min)					
15:45	Ligands (30 min)					
16:15	PDB deposition (15 min)					
16:30	Discussion and questions					
17:00	End					

What is *Phenix*?

- Package for automated structure solution (crystallography, cryo-EM)
- Apply modern programming concepts to develop new algorithms
- Designed to be used by both novices and experienced users
- Long-term development and support
- Why is it called *Phenix*?

Python Hierarchical ENvironment for Integrated Xtallography

The Phenix Project

Lawrence Berkeley Laboratory

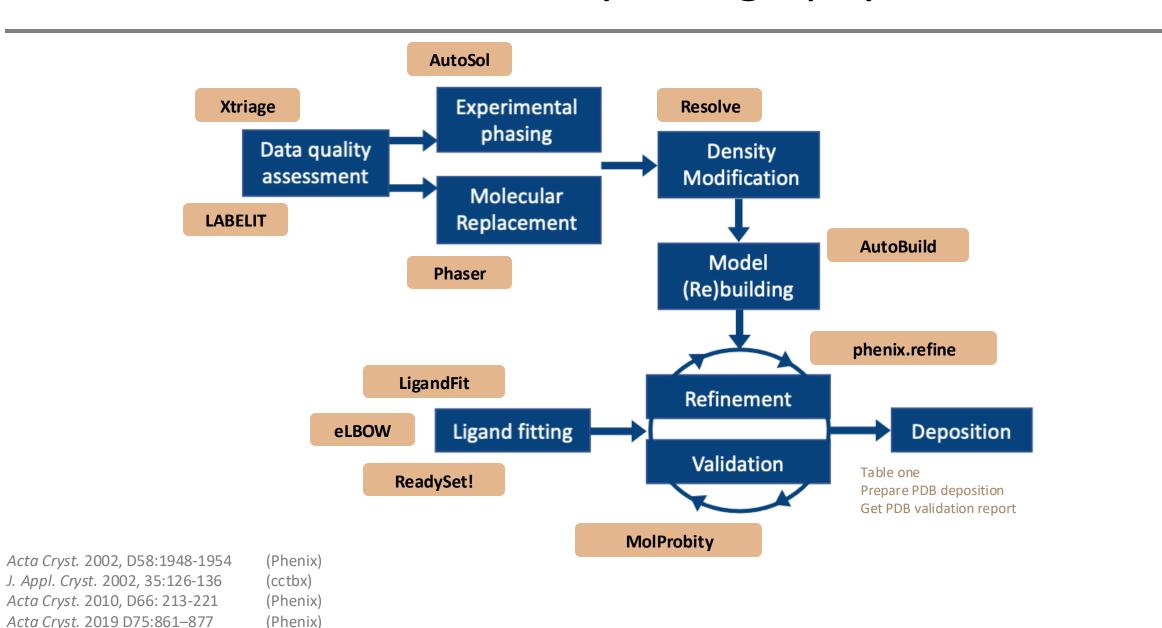
Paul Adams, Pavel Afonine, Dorothee Liebschner, Nigel Moriarty, Billy Poon, **BERKELEY** LAB Oleg Sobolev

Los Alamos National Laboratory New Mexico Consortium

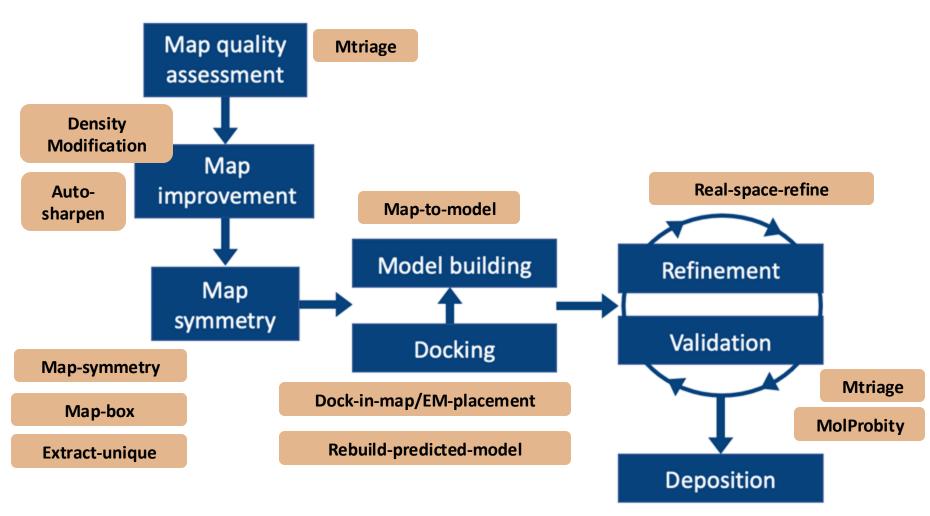
UTHealth

University of Cambridge

Randy Read, Airlie McCoy


Duke University

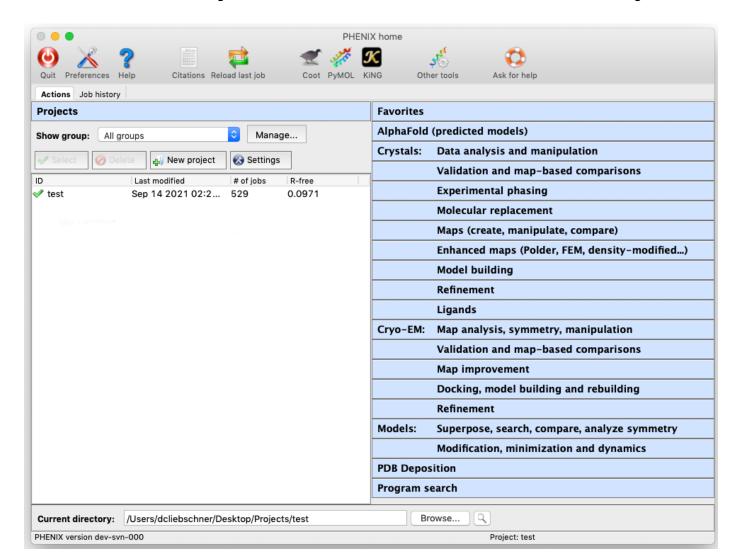
Jane Richardson, Vincent Chen



Tools for Crystallography

Tool for cryo-EM

Acta Cryst. 2002, D58:1948-1954 (Phenix)

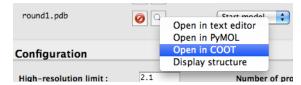

J. Appl. Cryst. 2002, 35:126-136 (cctbx)

Acta Cryst. 2010, D66: 213-221 (Phenix)

Acta Cryst. 2019 D75:861–877 (Phenix)

Phenix Graphical User Interface (GUI)

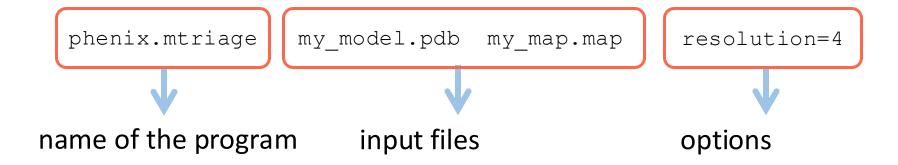
Central GUI for job control and to launch new jobs



Coot/PyMOL/ChimeraX integration

Most results can be opened directly in graphics apps

Any PDB file listed in GUI can also be opened



Specific paths to executables usually required on Linux

Preferences → Graphics → Full path to Coot [...PyMOL]

Command Line

Run on the terminal

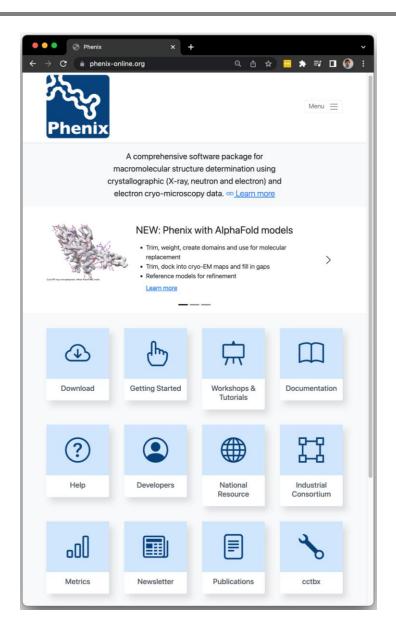


Run in a python script

```
inp = iotbx.pdb.input(fname)
model = mmtbx.model.manager(model_input=inp)
zs = rama_z([model], log=null_out())
z_scores = zs.get_z_scores()
print (z_scores)
```

Video Tutorials

https://www.youtube.com/c/phenixtutorials


Dorothee Liebschner, Tom Terwilliger, Nigel Moriarty, Christopher Schlicksup, Vincent Chen

Presentation slides

https://phenix-online.org

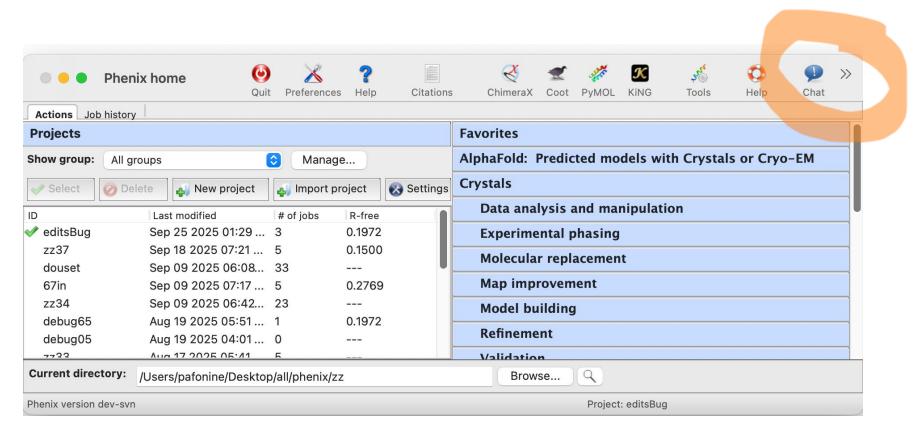
A comprehensive software package for macromolecular structure determination using crystallographic (X-ray, neutron and electron) and electron cryo-microscopy data. <u>Learn more</u> Phenix integrated with AlphaFold Structure determination with AlphaFold video tutorial • Predict a structure on the Phenix AlphaFold server video tutorial • PredictAndBuild (Xray) video tutorial • PredictAndBuild (cryo-EM) video tutorial Download **Getting Started** Workshops & Tutorials Documentation Help Developers National Resource Industrial Consortium

Phenix resources

Phenix paper

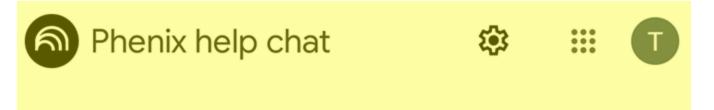
Video tutorials (YouTube)

Documentation


Relevant papers

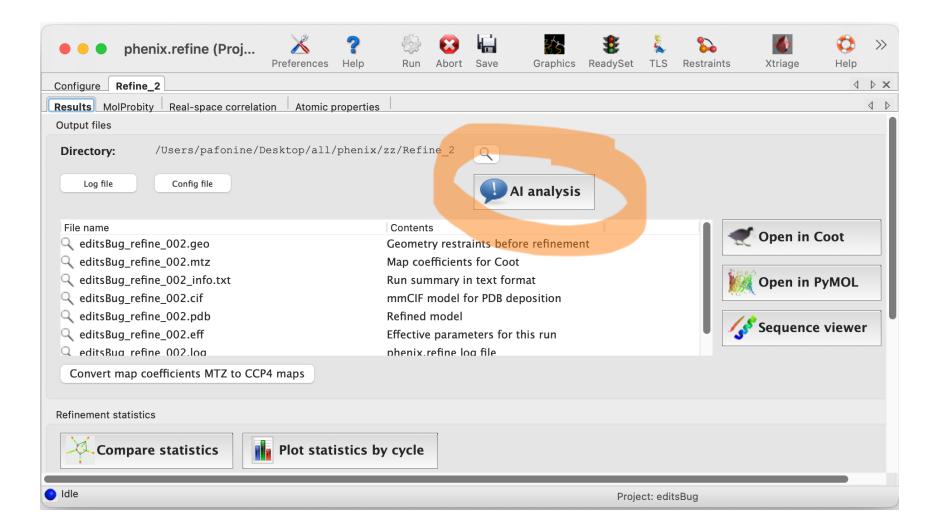
Bi-annual newsletters

PDFs with slides from workshops


Phenix chatbot

phenix-online.org/chatbot

Phenix chatbot


phenix-online.org/chatbot

How do I solve a cryo-EM structure with phenix?

Solving a cryo-EM structure with PHENIX involves several sophisticated steps, often utilizing fully automated procedures for map processing, model building, and refinement. The general workflow is centered on interpreting the electron density map to construct an accurate atomic model, typically relying on real-space refinement methods rather than the reciprocal-space methods used in

Al analysis of results

Al analysis of results

3. Evaluation of the Run:

- The run appears to have been useful, as indicated by
 - R-value (0.26) and R-free (0.31) are within accessing a good fit to the experimental data.
 - RMSD (0.27 Å) indicates a high level of structur
 - Map-model CC 2mFo-DFc (0.78) and Map-mo correlation between the model and the electron
 - pLDDT (95.48) indicates high confidence in the
- These metrics suggest that the goals of the program, structural model, were largely achieved.

4. Suggested Next Steps:

- Refinement with 'phenix.refine':
 - Input: The best overall predicted model ('Predic

Chatbot: What it can and cannot do

It is good for:

- Summarizing the documentation
- Asking specific questions that can be answered based on the documentation
- Asking follow-up questions

It can make mistakes of give incomplete answers:

Create an atom selection string that will select all the main-chain atoms of the nucleic acid residues in chain A

may yield:

"backbone and chain A"

instead of:

"backbone and (not protein) and chain A"

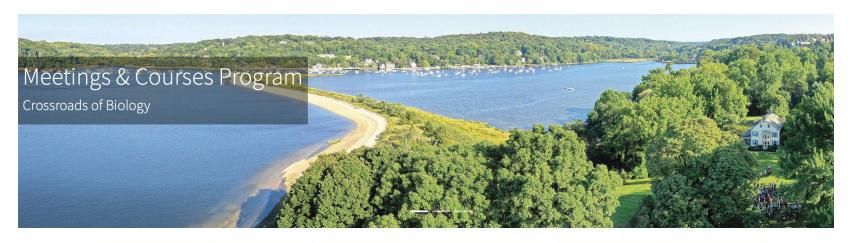
Chatbot: What is needed to run it

- A Google account
 - Any account will work
 - A paid account will allow you to ask more questions in a day

You can help us to improve the chatbot:

If the chatbot gives a bad answer...

Let us know (send an email)


We can update the documentation to give the chatbot the information it needs to give a good answer

Crystallography courses in the US

CSHL course: Macromolecular Crystallography

CSH Cold Spring Harbor Laboratory

October 12-28, 2025

Home			Meetings		Courses	
WELCOME	INFO	APPLICATION	TRAVEL	SPONSORS	PAYMENTS	POLICIES

Macromolecular Crystallography

October 12 - 28, 2025

Key Dates:

Application Deadline: July 15 2025 Arrival: October 12th by 6pm EST Departure: October 28th

https://meetings.cshl.edu/courses.aspx?course=C-CRYS

Rapidata (May)

RapiData 2025 at SSRL

Data Collection and Structure Solving: A Practical Course in Macromolecular X-Ray Diffraction Measurement May 5 - May 10, 2025

Home

Announcement

Application and Registration

Schedule

Participant Information

Transportation

Stanford Synchrotron Radiation Lightsource

Event Information

Course dates: May 5 - May 10, 2025

Applications opens: November 2024

Application deadline: January 31

2025

Applications received after the deadline will be placed in a stand-by list.

CCP4 school Argonne (June)

Collaborative Computational Project No. 4 Software for Macromolecular X-Ray Crystallography

2025 Home

Program

Course Material

Application

Accommodation

Location Participants

Contact us

Acknowledgements

CCP4/APS School in Macromolecular Crystallography: From data collection to structure refinement and beyond

School Announcement

We are very pleased to announce the 17th annual CCP4 USA Crystallography School organized jointly with the National Institute of General Medical Sciences and National Cancer Institute Structural Biology Facility at the Advanced Photon Source (GM/CA@APS). The 2025 school will take place at the Advanced Photon Source (APS) synchrotron site at Argonne National Laboratory, near Chicago.

School Dates

June 23 - 30, 2025

The first two days will be dedicated to data collection and processing. The rest of the school will focus on structure solution, refinement and validation. The workshop will be proceeded by two virtual introduction days.

Acknowledgements

Berkeley Laboratory

Pavel Afonine, Youval Dar, Nat Echols, Jeff Headd, Richard Gildea, Ralf Grosse-Kunstleve, Dorothee Liebschner, Nigel Moriarty, Nader Morshed, Billy Poon, Ian Rees, Nicholas Sauter, Oleg Sobolev, Peter Zwart

Los Alamos Laboratory/New Mexico Consortium

Tom Terwilliger, Li-Wei Hung

Baylor College of Medicine

Matt Baker

Cambridge University

Randy Read, Airlie McCoy, Gabor Bunckozi, Tristan Croll, Rob Oeffner, Kaushik Hatti, Massimo Sammito, Duncan Stockwell, Laurent Storoni

Duke University

Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Chris Williams, Bryan Arendall, Bradley Hintze, Laura Murray

UC San Francisco

Ben Barad, Yifan Cheng, Jaime Fraser

University of Washington

Frank DiMaio, Ray Wang, David Baker

Oak Ridge National Laboratory

Marat Mustyakimov, Paul Langan

Other Collaborators

Corey Hryc, Zhao Wang, Wah Chiu
Pawel Janowski, David Case
Dale Tronrud, Donnie Berholz, Andy Karplus
Alexandre Urzhumtsev & Vladimir Lunin
Garib Murshudov & Alexi Vagin
Paul Emsley, Bernhard Lohkamp, Kevin Cowtan
David Abrahams
Phenix Testers & Users

Funding

- NIH/NIGMS: P01GM063210, P50GM062412, P01GM064692, R01GM071939
- PHENIX Industrial Consortium
- Lawrence Berkeley Laboratory