Model Refinement: X-ray vs cryo-EM

Pavel Afonine

Lawrence Berkeley National Laboratory (LBNL)

September 26th, 2024 BNL

Refinement

Atomic model refinement: crystallography vs cryo-EM

Crystallographic refinement

- Improving model improves map
 - (2mFo-DFc, Model phase), (mFo-DFc, Model phase)
 - Better model leads to better map
 - Better map leads to more model built
 - Improving model in one place lets build more model elsewhere in the unit cell
 - Refine all model parameters (XYZ, B) from start to end of structure solution
 - · Build solvent (ordered water) early
- Experimental data never changed
- Data / restraints weight is global and time expensive to find best value
- Whole model needs to be refined

Cryo-EM refinement

- Changing model does not change map
 - Build solvent (water) last
 - Get as complete and accurate model as possible before refining B factors and occupancies
- Experimental data changes a lot during the process (filtering, boxing, using maps with implied symmetry or not, etc.)
 - What map to use in refinement?
 - Refined B factors depend on map used
- Data / restraints weight can be local and is always optimal
- Boxed parts of the model can be refined

Not all model-to-data fitting is refinement

- Docking, flexible fitting, morphing are **not** refinement
- Refinement is to fine-tune an already fine atomic model
 - Refinement does only small changes to the model (within convergence radius of refinement, ~ 1Å)

Atomic model refinement: phenix.real_space_refine

Real-space refinement in *PHENIX* for cryo-EM and crystallography

Pavel V. Afonine, a,b* Billy K. Poon, Randy J. Read, Oleg V. Sobolev, Thomas C. Terwilliger, Alexandre Urzhumtsev and Paul D. Adams Alexandre Urzhumtsev Ale

Model-to-map fit validation: CC_{MASK}

$$CC_{MASK} = \frac{\sum \rho_{obs} \, \rho_{calc}}{(\sum \rho_{obs}^2 \, \sum \rho_{calc}^2)^{1/2}}$$

 ρ_{obs} = experimental map ρ_{calc} = model calculated map

- Easy interpretation: -1: anticorrelation, 0: no correlation, 1: perfect correlation
- Uses all atomic model parameters (XYZ, B-factors, occ, atom type)
- Not specific to map type (any map: x-ray, neutron, electron, cryo-EM, ...)
- Can be calculated locally (per atom, residue, chain, molecule, whole box, ...)
 - Local resolution can be trivially taken into account

Metric	Expected value
CC _{MASK}	Poor: < 0.3 So-so: 0.3-0.6 Good: > 0.6

Model-to-map fit validation: CC_{MASK}

Gaussian IAM (Independent Atom Model)

$$\rho_{MODEL}(\mathbf{r}) = \sum_{i=1}^{Natoms} \rho_{atoms}(\mathbf{r})$$

Model-to-map fit validation: CC_{MASK}

3Å model-calculated map

Exact model map

$$\rho_{MODEL}(\mathbf{r}) = \sum_{i=1}^{Natoms} \rho_{atoms}(\mathbf{r})$$

3Å experimental map

- FT exact model map
- Remove terms up to specified resolution
- FT back to real space to get a Fourier image = "Model map"

Atom inclusion

• Atom inclusion: fraction of atoms inside molecular envelope contoured at a given level

- Contouring threshold (Arbitrarily? What is optimal level?)
- No use of atomic model parameters such as ADP, occupancy, atom type, ...
- Does not use shape of density
- Does not account for missing atoms
- Does not use map type
- Unaware of alternative conformations

Q-Score

• **Q-score**: measure the resolvability of individual atoms in a cryo-EM map, using an atomic model fitted to or built into the map

- Does not use ADP, occupancy, atom type, ...
- Does not use shape of density
- Does not account for missing atoms
- Alternative conformations are not handled
- Anisotropic atoms are not handled

Validation reports (RCSB): only Q-score and atom inclusion

Model-to-map fit statistics is insufficient and very well hidden!

Refinement: practical considerations

- Final stages
 - Refine B-factors (Atomic Displacement Parameters)
 - Group B factor or individual
 - Refine occupancies
 - Use Hydrogen atoms (and keep them in the final model!)
 - Add water (phenix.douse: command line and GUI):

Also available in ChimeraX

Variability refinement

Treasuring conformational changes

Contents lists available at ScienceDirect

BBA - Biomembranes

Review

Pavel V. Afonine ^{a,*}, Alexia Gobet ^b, Loïck Moissonnier ^b, Juliette Martin ^b, Billy K. Poon ^a, Vincent Chaptal ^{b,*}

^b Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University Lyon1, 7 passage du Vercors, 69007 Lyon, France

^a Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Maps

ABC transporter BmrA (unpublished!)

Refined ensembles of models

phenix.varref – Phenix tool to represent ensemble of maps with ensemble of atomic models

```
phenix.varref
    map1.mrc ... mapN.mrc
    model.pdb
    resolution=3
    nproc=100
    models_per_map=100
```

Output: ensemble of refined models that represents all maps

Automated re-refinement of deposited cryo-EM models

- <u>Developers</u>: helps track the impact of new methods and tools
- <u>Users</u>: lets to see how their models can benefit from improved methods and tools