Model Refinement: cryo-EM

Pavel Afonine

lbl.gov

qrefine.com

ACA, Denver, Colorado

July 7th 2024

Refinement in Phenix

phenix.refine
Available since 2005

phenix.real_space_refine Available since 2013

Atomic model refinement: crystallography vs cryo-EM

Crystallographic refinement

- Improving model improves map
 - (2mFo-DFc, Model phase), (mFo-DFc, Model phase)
 - Better model leads to better map
 - Better map leads to more model built
 - Improving model in one place lets build more model elsewhere in the unit cell
 - Refine all model parameters (XYZ, B) from start to end of structure solution
 - · Build solvent (ordered water) early
- Experimental data never changed
- Data / restraints weight is global and time expensive to find best value
- Whole model needs to be refined

Cryo-EM refinement

- Changing model does not change map
 - Build solvent (water) last
 - Get as complete and accurate model as possible before refining B factors and occupancies
- Experimental data changes a lot during the process (filtering, boxing, using maps with implied symmetry or not, etc.)
 - What map to use in refinement?
 - Refined B factors depend on map used
- Data / restraints weight can be local and is always optimal
- Boxed parts of the model can be refined

Atomic model refinement: phenix.real_space_refine

Real-space refinement in *PHENIX* for cryo-EM and crystallography

Pavel V. Afonine, a,b* Billy K. Poon, Randy J. Read, Oleg V. Sobolev, Thomas C. Terwilliger, Alexandre Urzhumtsev and Paul D. Adams Alexandre Urzhumtsev Ale

How we evaluate refinement progress (model-tomap fit) or what's the analogue of crystallographic R-factor?

Model-to-map fit validation: CC_{MASK}

$$CC_{MASK} = \frac{\sum \rho_{obs} \, \rho_{calc}}{(\sum \rho_{obs}^2 \, \sum \rho_{calc}^2)^{1/2}}$$

 ρ_{obs} = experimental map ρ_{calc} = model calculated map

- Easy interpretation: -1: anticorrelation, 0: no correlation, 1: perfect correlation
- Uses all atomic model parameters (XYZ, B-factors, occ, atom type)
- Not specific to map type (any map: x-ray, neutron, electron, cryo-EM, ...)
- Can be calculated locally (per atom, residue, chain, molecule, whole box, ...)
 - Local resolution can be trivially taken into account

Metric	Expected value				
CC _{MASK}	Poor: < 0.3 So-so: 0.3-0.6 Good: > 0.6				

Model-to-map fit validation: CC_{MASK}

Gaussian IAM (Independent Atom Model)

$$\rho_{MODEL}(\mathbf{r}) = \sum_{i=1}^{Natoms} \rho_{atoms}(\mathbf{r})$$

Model map

- Gaussian IAM (Independent Atom Model)
- Anisotropic:

$$\rho_{atom}(\mathbf{r}, \mathbf{U}, q) = q \sum_{j=1}^{5} \frac{q \, a_j \left(4\pi\right)^{3/2}}{\left|8\pi^2 \mathbf{U}_{cart} + b_j \mathbf{I}\right|^{1/2}} \exp\left(-4\pi^2 (\mathbf{r} - \mathbf{r}_0)^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \left[8\pi^2 \mathbf{U}_{cart} + b_j \mathbf{I}\right]^{-1} \mathbf{A} (\mathbf{r} - \mathbf{r}_0)\right)$$

ATOM	25	CA	PRO A	4	31.309	29.489	26.044	1.00 57.79	\ C
ANISOU	25	CA	PRO A	4	8443 74	05 611	.0 2093	3 –24 -	-80 C

Model-to-map fit validation: CC_{MASK}

3Å model-calculated map

Exact model map

$$\rho_{MODEL}(\mathbf{r}) = \sum_{i=1}^{Natoms} \rho_{atoms}(\mathbf{r})$$

3Å experimental map

- FT exact model map
- Remove terms up to specified resolution
- FT back to real space to get a Fourier image = "Model map"

Other popular model-to-map fit metrics and reasons why they are not as good as CCmask

Atom inclusion

- Atom inclusion: fraction of atoms inside molecular envelope contoured at a given level
 - Contouring threshold: Arbitrarily? What is optimal level?
 - No use of atomic model parameters such as ADP, occupancy, atom type, ...
 - Does not compare shape of density:
 - How SER placed into PHE density is going to score?
 - How water O placed into Mg peak will score?
 - Does not account for missing atoms
 - Does not use map type (x-ray, neutron, electron)
 - Partially occupied atoms (alternative conformations):
 - Chosen level for fully occupied atoms needs to be scaled by occupancy for partially occupied atoms

Q-Score

- **Q-score**: measure the resolvability of individual atoms in a cryo-EM map, using an atomic model fitted to or built into the map
 - No use of atomic model parameters such as ADP, occupancy, atom type, ...
 - Shape of density:
 - How SER placed into PHE density is going to score?
 - How water O placed into Mg peak will score?
 - Does not account for missing atoms (it shouldn't given the definition)
 - Alternative conformations are not handled
 - How anisotropic atoms are not handled
 - Does not use map type (x-ray, neutron, electron)

Example: Q-Score for exact (model-generated) map

Overall and worst Q-Score (calculated in ChimeraX)

- Why Q-Score is not perfect (=1) given these are exact model-generated maps?
- Why it varies with the resolution?

Validation reports (RCSB): only Q-score and atom inclusion

Model-to-map fit statistics is insufficient and very well hidden!

Refinement: practical considerations

- Final stages
 - Refine B-factors (Atomic Displacement Parameters)
 - Group B factor or individual
 - Refine occupancies
 - Use Hydrogen atoms (and keep them in the final model!)
 - Add water (phenix.douse: command line and GUI):

Also available in ChimeraX

Map sharpening and refinement

Deposited Map

Autosharpened Map

EMDB: 8414, PDB: 5tji

Fully automatic:

No manual trial-and-error | No parameters to adjust | Only inputs: map and resolution

Automated map sharpening by maximization of detail and connectivity

Thomas C. Terwilliger, a,b* Oleg V. Sobolev, Pavel V. Afonine and Paul D. Adamsd,e

Map symmetry and refinement

Solvent building and refinement: phenix.douse

Available in ChimeraX!

Maps and refinement

- Analogue of crystallographic Fo-Fc map
- Requires well-refined model (including B factors)

Variability refinement

Treasuring conformational changes

Contents lists available at ScienceDirect

BBA - Biomembranes

Review

Pavel V. Afonine ^{a,*}, Alexia Gobet ^b, Loïck Moissonnier ^b, Juliette Martin ^b, Billy K. Poon ^a, Vincent Chaptal ^{b,*}

^b Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University Lyon1, 7 passage du Vercors, 69007 Lyon, France

^a Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Maps

ABC transporter BmrA (unpublished!)

phenix.varref – Phenix tool to represent ensemble of maps with ensemble of atomic models

```
phenix.varref
    map1.mrc ... mapN.mrc
    model.pdb
    resolution=3
    nproc=100
    models_per_map=100
```

Output: ensemble of refined models that represents all maps

Workflow

- Input model and maps
- Order maps by similarity using CC_{box}
- Identify the map that is closest to input model (by CC_{mask})
 - This is the starting point for the first refinement
 - Generate ensemble of 100 perturbed models (by MD)
 - Refine each model with phenix.real_space_refine
 - Combine all refined models to yield overall best fitting model
- Refine ensemble of refined models against the next closest map
 - Combined all refined models to yield overall best fitting model
- ...and so on for all maps.
- Result:
 - N models corresponding to N maps
 - 100 models per map (can be used to estimate uncertainty)

Refined ensembles of models

Automated re-refinement of deposited cryo-EM models

- <u>Developers</u>: helps track the impact of new methods and tools
- <u>Users</u>: lets to see how their models can benefit from improved methods and tools