Model Refinement

Oleg Sobolev

Phenix team

Lawrence Berkeley National Lab, California, USA

August 22, 2023 IUCr 2023, Melbourne

Model refinement vs other model fitting tools

• All the above move model to achieve better fit. The difference is: by how much

Model refinement

Refinement – optimization process of fitting model parameters to experimental data

Refinement: model

Atomic model parameters

Additional information (restraints, constraints)

Restraints for coordinate refinement

• The weight *w* balances data and restraints $T = T_{\text{DATA}}(F_{\text{OBS}}, F_{\text{MODEL}}) + wT_{\text{RESTRAINTS}}$

- Too much restraints: model may not adequately describe the data
- Too much data: model may not obey prior knowledge about model geometry
- Using optimal weight is very important
 - Programs know how to calculate it optimally
 - Sometimes programs fail to calculate it optimally
 - You need to be able to recognize this situation

Restraints in structure refinement

Refinement target is usually a weighted sum of experimental data and a priori chemical knowledge terms

$$T = T_{\text{DATA}}(F_{\text{OBS}}, F_{\text{MODEL}}) + wT_{\text{RESTRAINTS}}$$

- At ultra-high resolution (<1Å) an unrestrained refinement sometimes may be possible.
- At 'typical'resolutions (1-3Å) standard restraints are necessary: covalent bond, angles, etc
- At lower resolution (lower than 3Å) more restraints needed: NCS, Secondary Structure, Ramachandran, …

Restraints for coordinate refinement

$$T = T_{\text{DATA}}(F_{\text{OBS}}, F_{\text{MODEL}}) + wT_{\text{RESTRAINTS}}$$

 $T_{\text{RESTRAINTS}} = T_{\text{BOND}} + T_{\text{ANGLE}} + T_{\text{DIHEDRAL}} + T_{\text{PLANE}} + T_{\text{REPULSION}} + T_{\text{CHIRALITY}} + \dots$

Importance of additional restraints

- Toy example: refinement of a perfect α -helix into low-res map
 - Standard restraints on covalent geometry isn't sufficient
 - Model geometry deteriorates as result of refinement

Restraints for low resolution

Similar (homologous) structures (reference model restraints)

Secondary structure restraints

Restraints **Sheets Helices** used Proteins n+4 H-bond lengths H-bond angles n **Base pairs Stacking pairs Nucleic Acids** H-bond lengths H-bond angles Planarity Parallelity

Ramachandran plot restraints

- Ramachandran plot restraints
 - Use to stop outliers from occurring

After refinement

Phi

120 120 60 60 Psi 0 Psi 0 -60-60-120 -120 0 0 -120 -60 60 -120 -60 60 120 0 120 0

Good idea to use Ramachandran plot restraints!

Before refinement

Phi

NCS (internal symmetry): constraints vs restraints

Source: Internet

- **Constraints**: molecules 1, 2 and 3 are required to be identical
- **Restraints**: molecules 1, 2 and 3 are required to be similar but not necessarily identical

Refinement target function (score)

Refinement target function (score)

Refinement

Crystallography

phenix.refine Available since 2005

Atomic model refinement: crystallography vs cryo-EM

Crystallographic refinement

- Improving model improves map
 - (2mFo-DFc, Model phase), (mFo-DFc, Model phase)
 - Better model leads to better map
 - Better map leads to more model built
 - Improving model in one place lets build more model elsewhere in the unit cell
 - Refine all model parameters (XYZ, B) from start to end of structure solution
 - Build solvent (ordered water) early
- Experimental data never changed
- Data / restraints weight is global and time expensive to find best value
- Whole model needs to be refined

Cryo-EM refinement

- Changing model does not change map
 - Build solvent (water) last
 - Get as complete and accurate model as possible before refining B factors and occupancies
- Experimental data changes a lot during the process (filtering, boxing, using maps with implied symmetry or not, etc.)
 - What map to use in refinement?
 - Refined B factors depend on map used
- Data / restraints weight can be local and is always optimal
- Boxed parts of the model can be refined

Refinement: command line

• Real-space (cryo-EM)

phenix.real_space_refine model.pdb map.mrc resolution=3.4
phenix.real_space_refine model.pdb map_coeffs.mtz
phenix.real_space_refine model.pdb map_coeffs.mtz ligans.cif
phenix.real_space_refine parameters.eff

• Reciprocal-space (crystallography)

phenix.refine model.pdb data.mtz

phenix.refine model.pdb data.mtz ligans.cif

phenix.refine parameters.eff

Refinement tools in *Phenix*

PHENIX home								
	?		Coot	ByMOL K	K		Ask for balp	
Quit Preferences		ieloau last job	0001	F YIVIOL N		Other tools	Ask for help	
Actions Job history								
Projects					Data	Data analysis		
Show group: All groups 🗘 Manage					Expe	Experimental phasing		
Select O Delete New project Settings					Mole	Molecular replacement		
					Mod	Model building		
ID vinerau	Last modified	# of jobs	R-free		Refi	nement		
ringer	Sep 07 2016 05:37	2			Kelli			
tmp2	Sep 07 2016 05:23	1		C		phenix.refine		
💜 5gnn	Sep 07 2016 08:42	1				Automated X-ray and	/or neutron refinement	
debug1	Sep 05 2016 10:51	2	0.0086		100	Real-space refi	nement	
tmp4	Aug 18 2016 07:23	2				Automated real-spac	e refinement	
testing	Aug 11 2016 01:54	1			(B)		eaut [aluba]	
mich	Jul 29 2016 12:47	1				Neutron rennem	nent [aipna]	
almu	Jul 28 2016 10:58	1				Alternate phenix.reline interface customized in		
rchen	Jul 22 2016 11:10	1			A	DEN refinement	[alpha]	
milva	Jul 15 2016 12:36	2				Deformable elastic ne	etwork refinement using s	
		11	0 1670			1	i a sular ranka comont atmit	
Current directory:	urrent directory: /Users/pafonine/Desktop/work/tmp					Browse		
PHENIX version dev-svn-000						Project: 5gnn		

Refinement protocol

Understanding inputs and outputs

Real-space inputs

- Atomic model (PDB, mmCIF)
- Map (real map: MRC or Fourier map: MTZ)
- Ligand restraints ("ligand CIF")
- Parameter files (as command line arguments or a file)
- Reciprocal-space inputs
 - Atomic model (PDB, mmCIF)
 - Reflection data (typically MTZ but most other formats are OK)
 - Ligand restraints ("ligand CIF")
 - Parameter files (as command line arguments or a file)

Understanding inputs and <u>outputs</u>

- Real-space outputs
 - Atomic model (PDB, mmCIF)
 - .log file
 - .eff file summary of all input parameters
 - .geo file (optionally)
- Reciprocal-space outputs
 - Atomic model (PDB, mmCIF)
 - .log file
 - .eff file summary of all input parameters
 - MTZ file with copy of input data and 2Fo-Fc and Fo-Fc maps
 - .geo file (optionally)

.geo file contains description of all the geometry restraints used in refinement

Understanding inputs and <u>outputs</u>

- MTZ outputted by phenix.refine contains
 - 1. Verbatim copy of input data considered for use
 - 2. Data that was actually used in refinement
 - 3. Total model structure factors **F**_{model}
 - 4. Fourier maps
 - 2mF_{obs}-DF_{model} 'filled'
 - 2mF_{obs}-DF_{model}
 - mF_{obs}-DF_{model}
 - Anomalous difference map (if anomalous data)

Refinement: practical considerations

Aggressive optimization methods

- Simulated annealing (SA)
- Model morphing
 - Only use if model has gross errors (correction requires large movements)
 - Do not use if model is relatively good and only needs small corrections

Use Hydrogen atoms

- Half of the atoms in a protein molecule
- Make most interatomic contacts
- Add to model towards the end, data resolution does not matter
- Once added, do not remove before the PDB deposition
- H do contribute to R-factors (expect 0.1-2% drop in R)

A structure without (left) and with (right) hydrogen atoms

Know when to stop refinement

Crystallographic model quality at a glance.

L.Urzhumtseva, P.V.Afonine, P.D.Adams & A.Urzhumtsev. Acta Cryst. D65,

297-300 (2009)

Know when to stop refinement

Likely overall good model

Clearly there are problems

Low resolution (3Å or worse)

- Use:
 - Ramachandran plot restraints
 - Secondary structure restraints
 - Reference model restraints (if quality homology model is available)
 - NCS (restraints or constraints)

NCS (Non-crystallographic symmetry)

- Constraints vs restraints
 - Constraints:
 - 4-5 Å or worse
 - Highly symmetric molecules
 - Restraints:
 - 2-4 Å
- Torsion vs Cartesian NCS
 - Torsion is preferable in most cases
- Symmetry related copies:
 - Can be found automatically as part of refinement
 - Can be specified manually
 - Automatic determination relies on model quality
 - Always check automatically detected NCS copies

Secondary structure (SS) restraints

- Always use at 3Å and worse
- Better than 3Å: use if needed
- Require SS annotation
- SS annotation must be accurate
 - Errors in SS annotation may propagate into refined model
- Secondary structure (SS) annotation
 - SS information
 - HELIX/SHEET records in PDB file or equivalent in mmCIF
 - Phenix generated parameter files
 - Tools to create SS annotation
 - Command line (phenix.secondary_structure_restraints)
 - Phenix GUI
 - Quality of SS annotation:
 - Depends on quality of input model (GIGO)
 - No software can annotate SS fully reliably and correctly
 - Manual validation and editing almost always required

Ramachandran plot restraints

- Likely need at about 3Å and worse
- Better than 3Å: use if needed (preserve good initial model from deterioration)
- Check Ramachandran plot regularly
- Don't use to fix outliers. Fix outliers first (manually), then use Ramachandran plot restraints to stop re-occurring outliers.

Ramachandran plot restraints

- Ramachandran plot restraints
 - Don't use to fix outliers. Fix outliers first, then use Ramachandran plot restraints to prevent re-occurring outliers.

Bad idea to use Ramachandran plot restraints in this case. Fix outliers first!

Rama-Z score

Structure

A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry

Graphical Abstract

Authors

Oleg V. Sobolev, Pavel V. Afonine, Nigel W. Moriarty, Maarten L. Hekkelman, Robbie P. Joosten, Anastassis Perrakis, Paul D. Adams

Correspondence

osobolev@lbl.gov (O.V.S.), r.joosten@nki.nl (R.P.J.)

In Brief

Counting the number of Ramachandran outliers is not sufficient for protein backbone validation. Sobolev et al. revisited the underutilized Ramachandran *Z* score. The authors describe its reimplementation in Phenix and PDB-REDO and showcase its utility. They advocate including it in the validation reports provided by the Protein Data Bank.

Talk tomorrow (Aug 23) 1:30 pm, room 209 Session A 20

Refinement: practical considerations

- Final stages
 - Make the model as complete as possible
 - Build alternative conformations
 - Use Hydrogen atoms (and keep them in the final model!)
 - Add ordered solvent components
- Remember: the better the model, the better the map
 - You may see and model your ligands better!

Reading

D RESEARCH PAPERS

Acta Cryst. (2018). D**74**, 531-544 https://doi.org/10.1107/S2059798318006551 Cited by 672

Part of CCP-EM Spring Symposium 2017

Real-space refinement in *PHENIX* for cryo-EM and crystallography

P. V. Afonine[®], B. K. Poon[®], R. J. Read[®], O. V. Sobolev[®], T. C. Terwilliger[®], A. Urzhumtsev and P. D. Adams[®]

Phenix resources

Phenix paper Video tutorials Documentation Relevant papers Bi-annual newsletters Slides from workshops

User support

Feedback, questions, help

Mailing list (anyone signed up): Bug reports (developers only): Ask for help (developers only): phenixbb@phenix-online.org bugs@phenix-online.org help@phenix-online.org

• Reporting a bug or asking for help:

- We can't help you if you don't help us to understand your problem
- Make sure the problem still exist using the latest *Phenix* version
- Send us all inputs (files, non-default parameters) and tell us steps that lead to the problem
- All data sent to us is kept confidentially

Project

Lawrence Berkeley Laboratory

Paul Adams, Pavel Afonine, Dorothee Liebschner, Nigel Moriarty, Billy Poon, Christopher Schlicksup, Oleg Sobolev

Phenix

The

University of Cambridge

Randy Read, Airlie McCoy, Tristan Croll, Claudia Millán Nebot, Rob Oeffner

Los Alamos National Laboratory New Mexico Consortium

Jane & David Richardson, Christopher Williams, Vincent Chen

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877