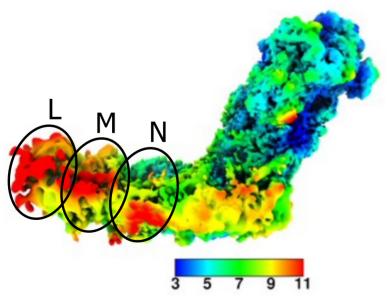
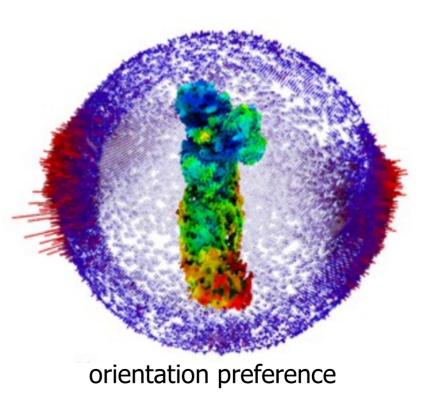

The docking problem in cryo-EM

- We have a map: how can we place an atomic model of a component in that map?
 - scoring problem
 - map correlations?
 - likelihood?
 - search problem: exploring rotations and translations
 - brute-force 6D search?
 - separate rotation and translation search?
 - decision problem
 - how confident can we be in the solution?

Which docking cases are important?


Likelihood: signal and noise in cryo-EM data


- Individual particle images are very noisy
 - use low dose to reduce radiation damage
 - average data from many particles
- Signal reduced by lack of reproducibility of the sample
 - different conformations, errors in particle orientation, radiation damage
- Signal and noise are analysed by comparing half-maps
 - this is used to calibrate the likelihood targets
 - expected signal-to-noise used to optimise search strategy
 - described in

Read, Millán, McCoy & Terwilliger, *Structural Biology (Acta Cryst D)*

Example: EMDB 12654: PDB 7nyu

- E. coli respiratory complex 1 in lipid nanodisc
 - Kolata & Efremov, eLife, 2021
 - resolution ranges from 3.8 to 11 Å

Docking a model to a cryo-EM map

- Break 6D search into two 3D searches for efficiency, as in MR
 - rotation search: uses amplitudes of the Fourier coefficients
 - equivalent to the crystallographic rotation function
 - translation search uses phase information
- Details of strategy adapt to the quality of the data and the model, through the expected log-likelihood-gain (eLLG)

The expected log-likelihood-gain (eLLG)

- Rotation eLLG: same as crystallographic eLLG for space group P1
 - much lower than translation eLLG: rotation is the hard step!
 - rotation LLG and eLLG can be increased by putting the relevant density in a smaller box: inversely proportional to box volume
 - this does require phase information!

Overall docking strategy in *EM_placement*

- Evaluate signal and noise in entire reconstruction
 - will the rotation search probably succeed?
 - YES: run rotation search followed by translation search • rotation eLLG
 - NO: will rotation search for minimal sub-volume succeed?
 - YES: divide map into sub-volumes, carry on as before
 - NO: do brute-force rotation and translation search
 Translation eLLG
- If potential solutions are found, carry out focused docking:
 - cut out volume needed to enclose each solution, do rigid-body refinement
- Implementation and test cases (1.7-8.5Å resolution, 5-50% complete model) described in Millán, McCoy, Terwilliger & Read, *Structural Biology (Acta Cryst D)*

Searching in a defined sphere: *emplace_local*

- More sensitive (and much faster) if you know approximately where a molecule should go
- Easiest to run from new ChimeraX plugin
 - see YouTube tutorials by Dorothee Liebschner
 - https://www.youtube.com/c/phenixtutorials
 - Phenix/ChimeraX playlist