Restraints in Phenix

Generating & modifying for all scenarios

Nigel W. Moriarty

User's Meeting University of Oklahoma, March 2024

What are restraints?

- Restraints are harmonic functions that provide (mostly) chemical information via residuals & gradients
- Needed because experimental data is rarely sufficient for structure determination
- Weighted with the experimental information to find the optimal result

Restraints in Action

- Libraries
 - Monomer Library
 - GeoStd
- Algorithms
 - Polymer
 - Links

GeoStd

- All standard amino acids
- Current list of non-standard amino acids
- All standard RNA/DNA
- Current list of non-standard RNA/DNA
- Others 37k Mogul validated restraints using PBEh-3c/CPCM and higher QM

What you will see

Missing restraints

PHENIX could not find geometry restraints in the standard monomer library for one or more residues in the PDB file (summarized below). This is easily fixed by using phenix.elbow to generate restraints from the atomic coordinates. You can do this quickly by selecting "Prepare structure and restraints" from the Utilities menu, or by clicking the "ReadySet" icon on the toolbar. Once you have created a restraints file, PHENIX can save it in your project settings and automatically load it in the future.

ZOZ: 1 copies

Or

Sorry: Fatal problems interpreting model file:

Number of atoms with unknown nonbonded energy type symbols: 21 Please edit the model file to resolve the problems and/or supply a CIF file with matching restraint definitions, along with apply_cif_modification and apply_cif_link parameter definitions if necessary.

CIF

- Crystallographic Information File
- mmCIF macro-molecular CIF
- Used for
 - Model
 - Data
 - Maps
 - Ligands
 - Information
 - Restraints

Confusion

- All depositions of X-ray model use mmCIF from 1 July 2019
- "I need a CIF file."
 - But what do you really need?

Restraints?

- Provide a reasonable geometry during refinement particularly at low resolution
 - Bonds, angles, dihedrals, chirals, planes, ...
- Must be weighted against the experimental information

Overview

- eLBOW electronic Ligand Builder & Optimisation Workbench
- ReadySet! One-stop preparation for your refinement needs
- REEL Restraints Editor Essentially Ligands

Ligands in crystallography

eLBOW goals

•Fast, simple and flexible procedure to include ligands

- •Reduce the tedium of building 3D ligand models
- Automate generation of restraints for ligands
- Comparison of ligand structures

N. W. Moriarty, R. W. Grosse-Kunstleve, P. D. Adams, (2009). Acta Cryst. D 65, 1074-1080.

Ligand Expo / Chemical Component Library

- List of all the entities in the Protein Data Bank
 - Amino acids, Nucleic acids
 - Ligands, Small molecule
 - Metal clusters
- In CIF format
 - Contents chemical information
 - SMILES, atom names, bonds
 - Not restraints

Amino Acid

Similar Ligands (Substructure Stereospecific)

Similar Ligands (Substructure including Stereoisomers)

Water

Chemical Description

NameWATERFormulaH2 OFormal charge0Molecular weight18.015 g/molComponent typeNON-POLYMER

Ideal Model

Metal clusters

5-letter codes

• 49k combinations for 3-letter codes

Human readable

Stan	dard	Human readable			
Uppercase	Lowercase	Uppercase	Lowercase		
1010	1oi0	1oi0	1oi0		
1IJJ	1ijj	1iJJ	1ijj		
40CL	4ocl	4oCL	4ocL		
5SS2	5ss2	5ss2	5ss2		

- Confusable letters are case-forced
 - L is always uppercase
 - i, o are always lowercase
- Somewhat confusable "5" and "S"

Topology

Optimisation

Getting ready to refine

• Many details needed to prepare for structure refinement

ReadySet!

- Add hydrogens
 - Default: adds hydrogens to protein, ligands
 - Protein Reduce
 - Ligands eLBOW
 - Add hydrogens to water
 - Add deuteriums instead of hydrogens
 - Add hydrogen & deuteriums appropriately
- Generate restraints

ReadySet!

- Restraints CIF filename
- Restraints CIF directory
- LINKS to "edits"
- -dry-run to show ligand process pathway
- Metal coordination

Restraints editing

- Visualisation of primary and secondary restraints
- Adjusting restraints to user preference

Restraints Editor, Essentially Ligands

- Generate a geometry for a set of restraints
- Modify restraints and generate new geometry
- Fast editing in menu items
- Highlight atom and restraints are highlighted
- Multiple ligands simultaneously
- Highlight restraint and atoms are highlighted
- Save restraints (CIF)
- Save geometry (PDB)
- Run eLBOW

12	4			A	12		0			0			
imple Opti	r' misati	ion	AL ROW	Optimisation	AM1 Optim	isation	Search Comr	onent	te I		do		
	misau		CLEON	optimisation		isation	Scarch Comp	Jonem		ind unique co		4.1	
AIP	_									1		N 1	
Atoms(43	3) B	onds(45) Angles	s(78) Dihedra	uls(30) Plane	s(17) C	hirals(4) CisTr	ans	Chirals In	nplicit(7) B	loatChair	4	•
	? со	omp_id	atom_id	type_symbol	type_energy	charge	partial_charge		x	У	z		
1	AT	ГР	PG	Р	Р	0		-2.	.009900	-8.93990	0.927100		
2	AT	Р	01G	0	0	0		-0.	919700	-9.90710	0 1.322000		
3	AT	гр	02G	0	OP	-1	-	-3.	257700	-9.23520	0 1.724400		
4	AT	Р	03G	0	OP	-1		-2.	.306500	-9.08990	0 -0.545900		
5	AT	гр	PB	Р	Р	0	-	-0.	243200	-6.67950	0.469800		
6	AT	гР	O1B	0	0	0		1.	050300	-7.25700	0.992700		
7	AT	гР	O2B	0	OP	-1	-	-0.	341900	-6.92970	0 -1.016000		
8	AT	ГР	O3B	0	02	0		-1.	514200	-7.39850	0 1.233500		
9	AT	ГР	PA	Р	Р	0		0.	670000	-3.96840	0 -0.041400		
10	AT	ГР	01A	0	0	0		0.	729800	-4.33250	0 -1.505600		
11	AT	Р	02A	0	OP	-1		2.	063300	-3.99080	0.540200		
12	AT	Р	03A	0	02	0		-0.	276300	-5.05660	0.757100		
13	AT	ГР	05'	0	02	0	-	0.	029800	-2.45830	0.123600		
14	AT	Р	C5'	С	CH2	0		0.	490600	-1.44300	0 -0.721300		
15	AT	Р	C4'	С	CH1	0	-	-0.	438000	-0.20460	0 -0.596500		
16	AT	Р	04'	0	02	0	-	0.	055400	0.644000	0.263400		
17	AT	ГР	C3'	С	CH1	0	-	-0.	496500	0.556500	0 -1.940500		
18	AT	ГР	03'	0	OH1	0	-	-1.	718900	0.408900	0 -2.511600		
19	AT	ГР	C2'	С	CH1	0	-	-0.	245900	2.038900	0 -1.588600		
20	AT	Р	02'	0	OH1	0	-	-1.	282600	2.903300	0 -2.232200		
21	AT	Р	C1'	С	CH1	0		-0.	.345300	2.109700	0 -0.288400		
22	AT	Р	N9	Ν	NR5	0	-	0.	564300	3.101200	0.226900		
23	ΔΤ	Р	C8	ſ	CR15	0		1	894800	3 031600	0 318500		

				Restraints Editor	Especially	Ligands (REEL)			
Gimple Optin	misation	eLBOW Op	otimisation	AM1 Optimisatio	on Sea	Q rch Components	Q Find unique	code	
ATP									< ⊳
Atoms(43)	Bonds(4	5) Angles(7	8) Dihedra	als(30) Planes(17)	Chirals(4)	CisTrans Ch	nirals Implicit(7)	BoatChair	< ►
	? comp_id	atom_id_1	atom_id_2	type	value_dist	value_dist_esd	value_dist_neu	tron	
1	ATP	PG	01G	deloc	1.510000	0.020000	1.51		
2	ATP	PG	02G	deloc	1.510000	0.020000	1.51		
3	ATP	PG	03G	deloc	1.510000	0.020000	1.51		
4	ATP	PG	O3B	single	1.648000	0.020000	1.648		
5	ATP	PB	O1B	deloc	1.510000	0.020000	1.51		
6	ATP	PB	O2B	deloc	1.510000	0.020000	1.51		
7	ATP	PB	O3B	single	1.648000	0.020000	1.648		
8	ATP	PB	03A	single	1.648000	0.020000	1.648		
9	ATP	PA	01A	deloc	1.510000	0.020000	1.51		
10	ATP	PA	02A	deloc	1.510000	0.020000	1.51		
11	ATP	PA	03A	single	1.648000	0.020000	1.648		
12	ATP	PA	05'	single	1.648000	0.020000	1.648		
13	ATP	05'	C5'	single	1.399000	0.020000	1.399		
14	ATP	C5'	C4'	single	1.553000	0.020000	1.553		
15	ATP	C5'	H5'1	single	0.970000	0.020000	1.09		
16	ATP	C5'	H5'2	single	0.970000	0.020000	1.09		
17	ATP	C4'	04'	single	1.305000	0.020000	1.305		
18	ATP	C4'	C3'	single	1.546000	0.020000	1.546		
19	ATP	C4'	H4'	single	0.970000	0.020000	1.09		
20	ATP	04'	C1'	single	1.617000	0.020000	1.617		
21	ATP	C3'	03'	single	1.357000	0.020000	1.357		
22	ATP	C3'	C2'	single	1.544000	0.020000	1.544		
23	ΔΤΡ	(3)	H3'	sinale	0 970000	0 020000	1 09		

00				Re	estraints Ed	litor Especi	ally Ligands (I	REEL)		
5	3		(3)		(0)	,	Q	C	2	
Simple Opt	timi	sation	eLBOW Optin	nisation	AM1 Optim	isation	Search Compon	ents Find uni	que code	
ATP									<	1 Þ×
Angles(7	8)	Dihedrals(3	30) Planes	(17) Chira	s(4) CisTra	ans Chirals	Implicit(7) B	oatChair Ribose(1	D 4	l ⊳×
	?	atom_id_1	atom_id_2	atom_id_3	atom_id_4	atom_id_5	restrained_to	Pucker		
1		C4'	C3'	C2'	C1'	04'		-+-+-		

View preferences loaded

00	e le												
\odot		6		٠		Q		Q					
Simple Opt	timi	sation	eLBOW Optin	nisation /	AM1 Optimisat	ion	Search Compor	nents Find	unique code				
LIG											<	1 1	> ×
Atoms(1)	2)	Bonds(11)	Angles(18)	Dihedrals(3)	Planes(6)	Chirals	CisTrans(1)	Chirals Implicit	BoatChair	Ribose	.	1 1	> ×
	?	atom_id_1	atom_id_2	restrained_to	E/Z								
1		C03	C02	E	E								

/iew in REEL	Code IOH CU OF OF 43	Image: Water info Image: Water info WATER Name WATER COPPER ION, 1 WATER COORDINATED FERROUS ION, 2 WATERS COORDINATED FERROUS ION, 2 WATERS COORDINATED HYDRATED FE (III) ION, 2 WATERS COORDINATED COORDINATED CALCIUM ION, 6 WATERS PLUS ETHANOL COORDINATED COORDINATED	
C 1 H 2 1(3 2(4 3(5 54)	Code IOH CU OF OF 43	Name WATER COPPER ION, 1 WATER COORDINATED FERROUS ION, 2 WATERS COORDINATED HYDRATED FE (III) ION, 2 WATERS COORDINATED CALCIUM ION, 6 WATERS PLUS ETHANOL COORDINATED	
1 H 2 10 3 20 4 30 5 54	IOH CU OF OF 43	WATER COPPER ION, 1 WATER COORDINATED FERROUS ION, 2 WATERS COORDINATED HYDRATED FE (III) ION, 2 WATERS COORDINATED CALCIUM ION, 6 WATERS PLUS ETHANOL COORDINATED	
2 10 3 20 4 30 5 54	CU OF OF 43	COPPER ION, 1 WATER COORDINATED FERROUS ION, 2 WATERS COORDINATED HYDRATED FE (III) ION, 2 WATERS COORDINATED CALCIUM ION, 6 WATERS PLUS ETHANOL COORDINATED	
3 20 4 30 5 54	OF OF 43	FERROUS ION, 2 WATERS COORDINATED HYDRATED FE (III) ION, 2 WATERS COORDINATED CALCIUM ION, 6 WATERS PLUS ETHANOL COORDINATED	
4 30 5 54	OF 43	HYDRATED FE (III) ION, 2 WATERS COORDINATED CALCIUM ION. 6 WATERS PLUS ETHANOL COORDINATED	
5 54	43 1	CALCIUM ION. 6 WATERS PLUS ETHANOL COORDINATED	
	1 ח־		
6 C		CADMIUM ION, 1 WATER COORDINATED	
7 C	D3	CADMIUM ION, 3 WATERS COORDINATED	
8 C	D5	CADMIUM ION, 5 WATERS COORDINATED	
9 C	:05	COBALT ION, 5 WATERS COORDINATED	
10 D	DOD	DEUTERATED WATER	
11 H	IC0	2 IRON/2 SULFUR/6 CARBONYL/1 WATER INORGANIC CLUST	
12 H	IC1	2 IRON/2 SULFUR/5 CARBONYL/2 WATER INORGANIC CLUST	
13 H	ICN	2 IRON/2 SULFUR/3 CARBONYL/2 CYANIDE/WATER/METHYLE	
14 K(04	POTASSIUM ION, 4 WATERS COORDINATED	
15 M	/N5	MANGANESE ION, 5 WATERS COORDINATED	
16 M	/N6	MANGANESE ION, 6 WATERS COORDINATED	
17 M	101	MAGNESIUM ION, 1 WATER COORDINATED	
18 M	102	MAGNESIUM ION, 2 WATERS COORDINATED	-
19 M	103	MAGNESIUM ION, 3 WATERS COORDINATED	
20 M	104	MAGNESIUM ION, 4 WATERS COORDINATED	
21 M	105	MAGNESIUM ION, 5 WATERS COORDINATED	
22 M	106	MAGNESIUM ION, 6 WATERS COORDINATED	
23 M	/ITO	BOUND WATER	
24 M	/W1	MANGANESE ION, 1 WATER COORDINATED	

Ligand Fitting

Approach

- Where is the ligand?
 - Choose the largest region of contiguous density
- What are rotatable bonds?
 - Analyze ligand for allowed rotations
- What is the orientation of the ligand?
 - Fit core of ligand
- What is the conformation of the ligand?
 - Trace the ligand out from the core

Automated Ligand Fitting

Tom Terwilliger, LANL

Acta Cryst. 2006, **D62**:915-922.

Fitting Over a Range of Resolutions

Restraints in phenix.(real_space_)refine

- LINK records have no impact
- Automatically accesses the "standard" residues restraints
- Automatically links the "standard" residues
- Parameter "link_all=True" links
 - Covalent ligands
 - Carbohydrates
 - Metal ions

phenix.(real_space_)refine (continued)

- RNA/DNA restraints
 - Base pair hydrogen bonding
 - Base pair planarity
 - Base stacking (parallelity)
- Secondary Structure restraints
- NCS restraints
- Custom bonds & angles using edits
- Restraints are written to .geo file including non bonded interactions

Ligands? Water?

- Be careful when inheriting a model
- Can contain ligands and water molecules
- Must be able to "see" them in the map

QM Restraints

- Generates restraints of ligands using Quantum Mechanics in situ
- There are two ways of using QMR
 - In *phenix.refine*
 - In a standalone program *mmtbx.quantum_interface*
- Python3 installers from the bottom of the download page
- For ORCA, set \$PHENIX_ORCA

In situ restraints generation

- Carve out the ligand
 environment
- Minimise the ligand geometry in situ
- Transfer geometry values to restraints (and write to disk)
- Refinement with modified restraints

QI

- phenix.fetch_pdb 4W53 --mtz
- phenix.ready_set 4W53.pdb
- mmtbx.quantum_interface 4W53.updated.pdb format=qi write_qmr_phil=True

The result is a PHIL scope for MBN QMR restraints:

• 4W53.updated_A_200_MBN.phil

QMR phil

gi.gm restraints (

selection - "chain A and resid 200 and resname MBN"

run_in_macro_cycles = "first_only first_and_last all last_only test

puller = 3.5

calculate = *in_situ_opt starting_energy final_energy starting_strain final_strain starting_bound final_bound starting_higher_single_point final_higher_single_point

write_files = *restraints pdb_core pdb_buffer pdb_final_core *pdb_final_buffer

```
package {
  program = *mopac test
  charge = Auto
  multiplicity = Auto
  method = Auto
  basis_set = Auto
  solvent_model = None
  nproc = 1
  read_output_to_skip_opt_if_available = True
  ignore_input_differences = False
  view_output = None}
}
```

Run

 mmtbx.quantum_interface 4W53.updated.pdb 4W53.updated_A_200_MBN.phil run_qmr=True

QM energies

```
"chain A and resid 200 and resname MBN"

Macro cycle 1

strain 2.073 kcal/mol (atoms 15)

opt -405946.999 kcal/mol (atoms 246)
```

In situ

QM Flipping

- Generate the three pronation states of HIS
- Flip chi-2 180 for total of six configurations
- Perform a QM geometry minimisation of the side-chain while freezing the heavy atoms (non-H) for rest of model
- Compare metrics
 - Energy
 - H-bonds
 - RMSD

Metrics

	Configuratio	Energy (kcal/	ΔE	H bonds	r.m.s.d.	Rotamer
0	HD1, HE2					m90
1	HD1, HE2	-1019.6	2.6	14	0.04	m90
2	HD1 only	-1022.2	0.0	14	0.04	m90
3	HE2 only	-1003.0	19.3	13	0.05	m90
4	HD1, HE2	-1004.0	18.3	12	0.29	m-70
5	HD1 only	-1004.4	17.9	12	0.38	m-70
6	HE2 only	-1009.4	12.9	11	0.32	m-70

The QMF results for the histidine resseq 4 in chain A of PDB $4rj_2$

Minimised geometry of two histidine configurations of histidine in chain A and resid 4 of PDB 4rj2.

Summary

- eLBOW & ReadySet! perform better when provided with better input. (GIGO)
- Need to know something about the ligand
 - Hierarchy of input file value
- Check your .geo file for confirmation of restraints

