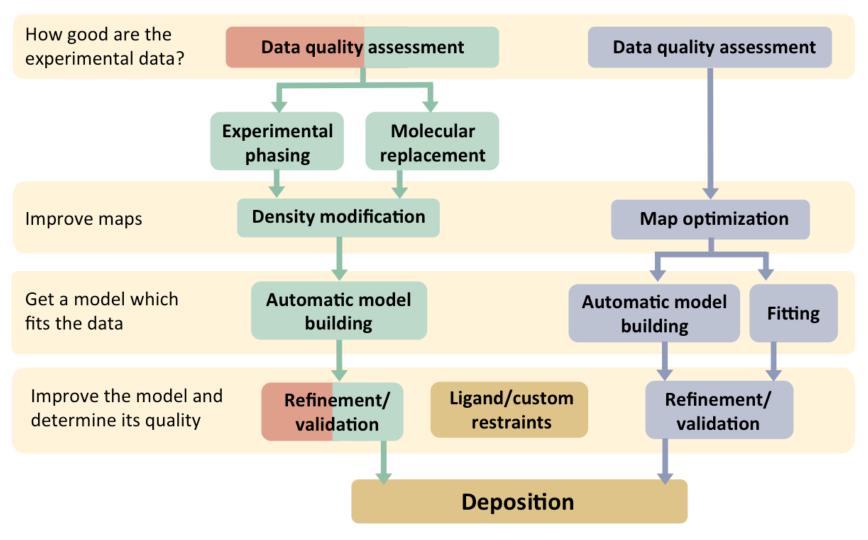
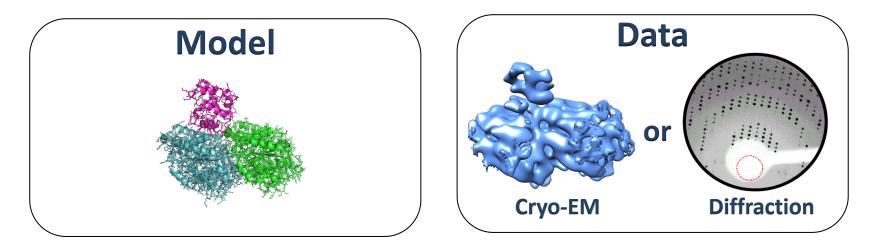
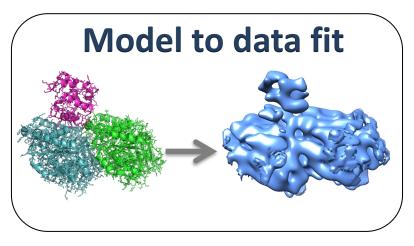
Validation: data analysis

Pavel Afonine

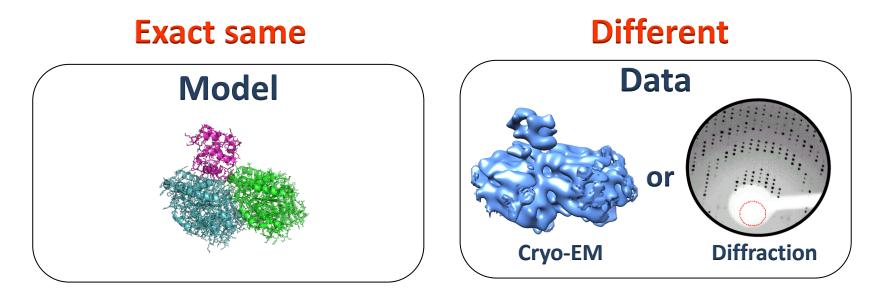

Lawrence Berkeley National Lab, California, USA

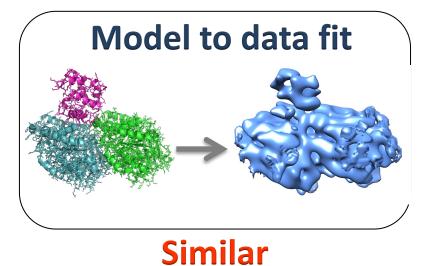
KU, November 9th 2023


Phenix: tools for crystallography and cryo-EM


Xray/neutron crystallography

Cryo-EM


Validation



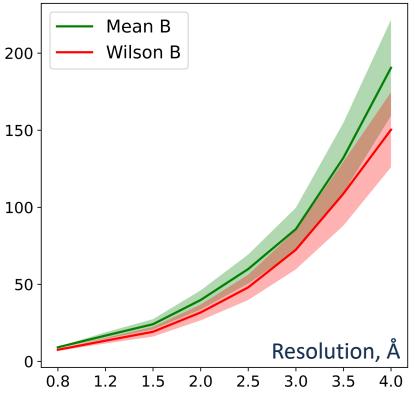
Validation = checking model, data and model-to-data fit are all make sense and obey to prior expectations

Validation tools: Crystallography vs Cryo-EM

Validation tools in Phenix

	PHENIX home								
🕑 🔏 ? 🛛	🛫 🚀 🥑	C 🤞 😳							
Quit Preferences Help Citat	ions Coot PyMOL Kil	G Other tools Ask for help							
Actions Job history									
Projects		Favorites							
Show group: All groups	S Manage	Data analysis							
Select 🕖 Delete 🛃 New p	project 😵 Settings	Xtriage Analysis of data quality and crystal defects							
ID Last modified ✓ ChrisF Apr 13 2020	# of jobs R-free 09:42 28 0.194								
real-space-refin Apr 03 2020 zzz1 Mar 21 2020		CC1/2.							
chris Mar 12 2020 dan Mar 11 2020		0 Analyze quality of maps in CCP4 format							
3j63 Mar 11 2020		Experimental phasing							
jason Mar 11 2020 rt6 Mar 11 2020		Molecular replacement							
mate Mar 10 2020		9 Model building Refinement							
emily Mar 09 2020									
Mar 05 2020		3 Cryo-EM							
alex Feb 27 2020		Validation							
rt20201 Feb 18 2020 1f8t Feb 03 2020		Communication indication (Y year (Neutron))							
real-space-refin Jan 30 2020	02:38 2	Model quality assessment, including real-space correlation and geometry inspection using MolProbity tools							
real-space-refin Jan 29 2020 ion_channel_den Jan 27 2020		Comprehensive validation (cryo-EM)							
10101 Jan 27 2020		Model quality assessment, including real-space correlation, for cryo-EM structures							
demos Jan 27 2020		Structure comparison							
ion_channel_den Jan 27 2020 malcolm Jan 22 2020									
malcolm Jan 22 2020 real-space-refin Jan 16 2020									
3NIR Dec 05 2019		Calculate CC*							
leighton Sep 02 2019		Comparison of unmerged data quality with refined model, as described in Karplus & Diederichs							
5pti Aug 27 2019		(2012)							
·		EMRinger Model validation for de novo electron microscopy structures							
		Ligands							
Current directory: /Users/pafoning	e/Desktop/all/people/ChrisF	Browse							
PHENIX version dev-svn-000 Project: ChrisF									

Xtriage: all about your Xtal data

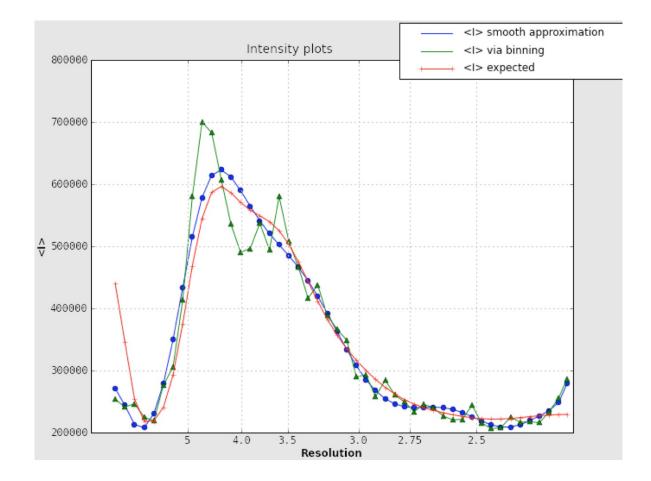

- Matthews coefficient probabilities
- Completeness by resolution
- Wilson plot sanity
- Detection of translational NCS (tNCS)
- Analysis of systematic absences and combination of tNCS with current space group
- Anomalous signal from measurability analysis
- Symmetry and twinning analyses
- Alternative point-group symmetry (can be detected on the basis of an Rvalue analyses)

Xtriage

•••	Xtriage (Project: porin-twin)										
×	2	- 63	•								
Preferences	Help	Run	Abort		Save graph	Ask for help					
Configure	Xtriage_1										
Run status	Results										
	Xtriage summary										
twin	operators s	show a si	ignifican	ing (intensities t twin fraction. ar to be preser		tly different from expec	cted for normal data) and one or more				
Ice rings do not appear to be present.											
The fraction of outliers in the data is less than 0.1%.											
The data are not significantly anisotropic.											
The	The resolution cutoff appears to be similar in all directions.										
The	overall com	pletenes	s in low	-resolution she	lls is at least 9	0%.					
Overall completeness is above 90%.											

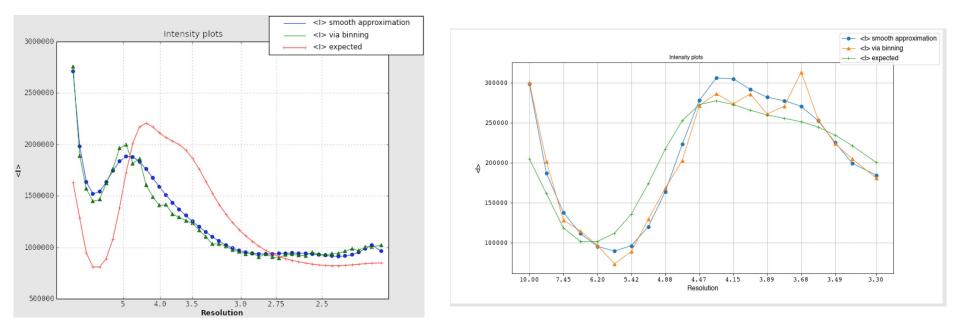
Wilson B

Whole PDB (quality filtered)



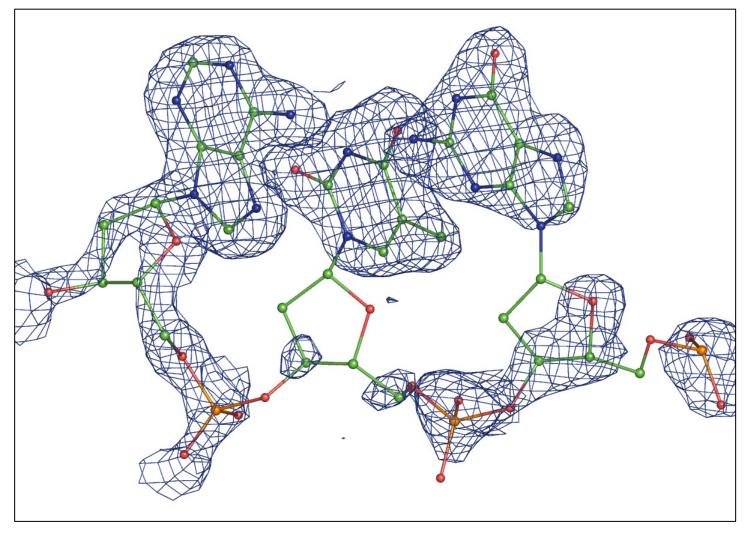
Wilson statistics assumes atoms of the same kind are randomly distributed in the unit cell and have the same isotropic B-factors

- Mean B and Wilson B are usually similar
 - Wilson B is dominated by strongly diffracting (lower B) atoms that contribute more to high-res reflections
 - Wilson B represents the lower end of the range of B-factors
 - Discrepancy between Wilson B and mean B is not important


Wilson plot (mean intensity vs resolution)

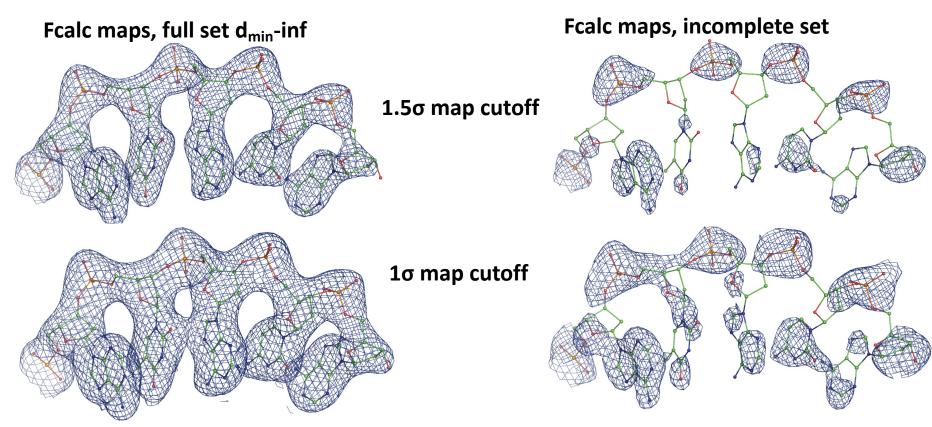
• The Wilson plot looks at mean intensity of diffraction by resolution, a curve which has a predictable shape

Wilson plot (mean intensity vs resolution)


- Main reasons for deviations from expected distribution
 - Bad data (e.g., ice rings or poor data processing
 - Macromolecule that doesn't look like the average protein
 - Looking at only a part of the plot (e.g., low-resolution data)

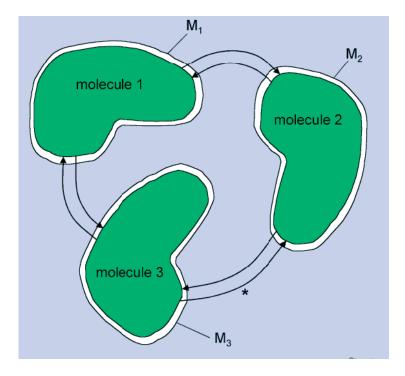
Data completeness

• PDB code: 1NH2, resolution 1.9Å, showing E6-E8

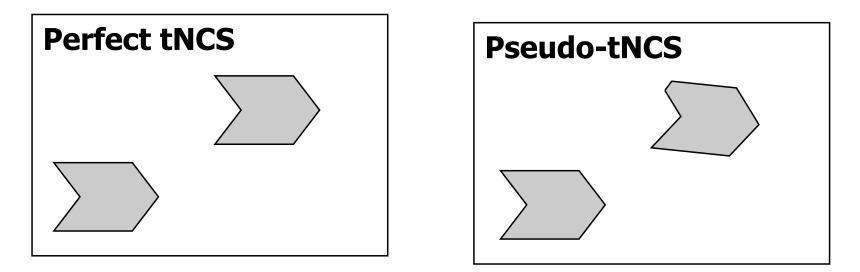

2mFo-DFc , 1σ

Data completeness

Completeness by resolution:


Overall completeness in d_{min} -inf: 0.95

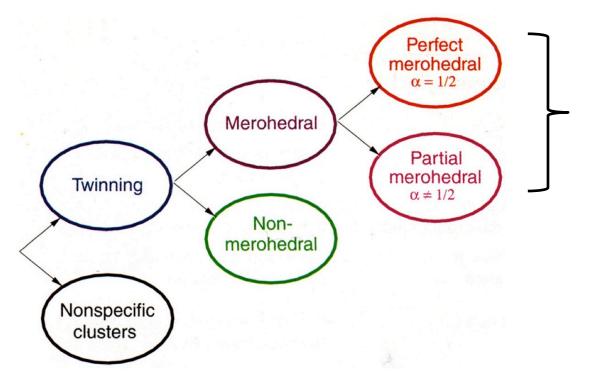
Systematic data incompleteness can distort maps


Non-crystallographic symmetry NCS

- Two or more molecules in the ASU related by rotation-translation
- NCS is found in about 1/3 to 1/2 of crystal structures
- Usually helps solving/refining models at medium-to-low resolution
- A special case of NCS, translational NCS (tNCS) leads to complications

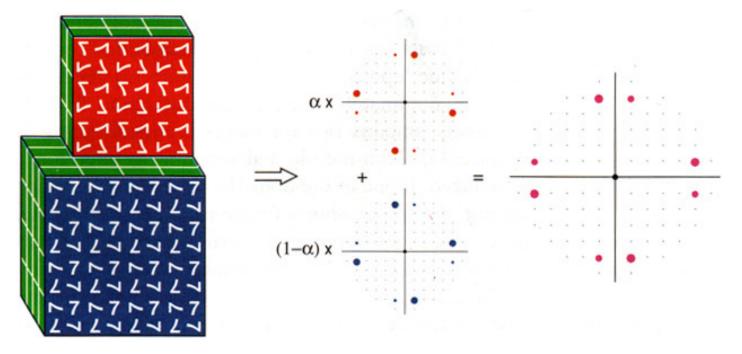
Translational NCS (tNCS)

 tNCS arises when the ASU contains components that are oriented in (nearly) the same way and can be superimposed by a translation that does not correspond to any symmetry operation in the space group.



- Used to complicate MR (no it is taken care of)
- Risk to bias OMIT map

Translational NCS (tNCS)

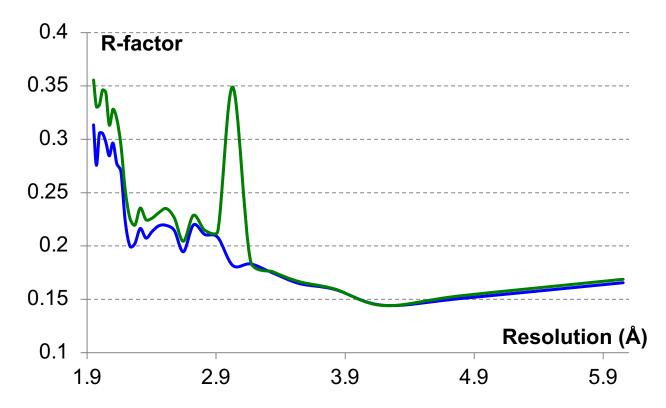

• • •				Xtria	ge (P	roject:	1j4r)								
×	?	(d) 🔀			(
references	Help	Run Abo	rt View log	Save graph	F	lelp									
Configure	Xtriage_1													٩	⊳ >
Run status	Results														4
			Xtriage su	mmary						\bigcirc					
Trar	slational N	CS is presen	t at a level that	may complicat	e refi	nement	(one or	r more	peaks g	greater th	an 20% o	f the or	rigin)]
The	intensity st	atistics look	normal, indicat	ing that the da	ıta ar	e not tv	inned.								
lce ı	rings do not	appear to l	pe present.												
The	fraction of	outliers in t	he data is less t	han 0.1%.											
🔴 The	data are no	t significant	tly anisotropic.												
🔴 The	resolution	cutoff appea	ars to be similar	in all directior	s.										
🔴 The	overall com	ipleteness ii	n low-resolutior	n shells is at lea	ast 90)%.									1
The	completene	ess is 98.98	%.												
Please ins	pect all in	dividual re	esults closely,	as it is diffic	ult t	o auto	matica	lly det	tect all	l issues.]
Idle									Pro	oject: 1j4r					

• Twinning is a crystal growth disorder

Typically only merohedral twinning is dealt with in a meaningful way in macromolecules

• Merohedral twining occurs when your crystal is composed of identical but rotated crystals combined together such that their lattices matching

• Observed intensity is a weighted sum of individual intensities:


$$I_{\text{OBS}}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \dots + \alpha_N I(\mathbf{T}_N \mathbf{h})$$
$$\alpha_1 + \dots + \alpha_N = 1$$

- Twinning parameterization
 - <u>Twin law</u> describes orientation of different species relative to each other (rotation matrix T that transforms hkl indices of one species into the other)
 - <u>Twin fraction (α)</u>: fractional contribution of each component
 - Estimated by Xtriage
 - Refined by phenix.refine

$$I_{\text{OBS}}(\mathbf{h}) = \alpha_1 I(\mathbf{h}) + \dots + \alpha_N I(\mathbf{T}_N \mathbf{h})$$
$$\alpha_1 + \dots + \alpha_N = 1$$

- tNCS can mask effects of twinning
- If both are present, intensity distributions may look like normal
 - First check for tNCS and use different test for twinning (L-test)
- If crystal is twinned, you have lost information
- Maps going to have model bias that is worse than usual
- Experimental phasing may be difficult
- False symmetry may appear

Watch for outliers

- R-factor in resolution bins helps to identify:
 - Problem with bulk-solvent modeling
 - Problems at high resolution
 - Artifacts (green line):

INDE 3 5 -42 IOBS= 999999.999 SIGIOBS= 0.000