

Experimental Phasing

Phenix Workshop October 14, 2023 80th Pittsburgh Diffraction Conference

Tom Terwilliger

Los Alamos National Laboratory/New Mexico Consortium

Solving a structure with SAD phasing

Solving a structure with SAD phasing (Se)

Will I solve my SAD structure?

Will I find the anomalous substructure?

Key steps in SAD structure determination

2. Calculate an interpretable map

Anomalous correlation CC*_{ano}

Anomalous correlation

- Correlation of anomalous differences with ideal
- Accuracy of anomalous data
- Accuracy of phasing

Anomalous signal

- Peak height in anomalous difference Fourier
- "Information per site" (can we find each site)
- Substructure likely to be found if S > 10

Will I find the anomalous substructure?

Anomalous signal: information about each site (peak height in anomalous difference Fourier)

Will I solve my SAD structure?

Why automate structure determination?

Makes straightforward cases easier

... and difficult cases feasible for experts

Speeds up the process

Reduces errors

Allows you to try more possibilities

Decision-making in automation

What does a good electron density map look like?

Using expected features of maps to make decisions and to improve maps

Decision-making in automation

Which map is better?

Histograms of density have positive skew

Typical histogram of electron density

Histograms of density have positive skew

Positive skew in good maps

Estimate map quality from skew

Density modification

What does a good density map look like?

Use expected features of maps to improve map quality

Key feature of this process: improving density anywhere can improve it everywhere

X-ray density modification: "phase improvement"

Basis of density modification

Clear map

1. We know a good map when we see it

2. Improvement anywhere *improves the phases* so there is improvement everywhere

Density modification

Automated model-building

Examples

- Shape-based identification of regular secondary structure
- Extension with short fragments from high-resolution structures
- Probabilistic sequence alignment

Finding regular protein structure

Extending with short fragments from PDB

Assembling best model

Identifying residue type at each position

#	G	Α	S	V	I	L	Μ	С	F	Y	К	R	w	Н	Е	D	Q	Ν	Р	т
1	6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1	4
2	4	11	14	37	5	2	0	2	0	0	2	3	0	0	1	2	0	0	0	6
3	11	23	5	12	5	3	2	0	1	3	7	3	1	0	5	3	2	0	2	2
4	7	9	6	16	8	5	2	0	1	3	8	4	1	0	7	6	2	0	3	4
5	31	7	3	7	4	2	1	0	1	3	5	4	1	0	6	2	2	0	11	1
6	1	3	3	41	14	8	0	0	0	0	2	1	0	0	2	4	0	0	1	9
7	0	0	0	0	0	0	0	0	15	63	1	0	17	1	0	0	0	0	0	0
8	2	3	6	23	10	6	2	1	0	1	4	3	0	0	5	16	1	0	1	6
9	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Inserting side chains based on sequence

Automated structure solution

Iterative map and model improvement

phenix.autobuild

Experimental data, sequence, phase information or starting model

Density modification

- Resolve building
- Secondary-structure only
- Connect chains
- Fit loops
- Build outside model

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*.

Acta Cryst. 2019 D75:861-877