Phenix Tools for Cryo-EM: Validation

Pavel Afonine

LBNL, Berkeley, California, USA

January 30, 2020

Cryo-EM tools in *Phenix*

Validation

Validation = checking model, data and model-to-data fit are all make sense and obey to prior expectations

Validation tools: Crystallography vs Cryo-EM

Validation

- Helps to save time
- Helps to produce better models
- Helps to set correct expectations

Validation

Validation for crystallography (X-ray, neutron) and cryo-EM

		X home				
	-	r 💉 🚾	.e. A			
			\$ @			
Quit Preferences Help Citations Coot PyMOL KiNG Other tools Ask for help						
Actions Job history						
Projects			Favorites			
Show group: All groups	\$	Manage	Data analysis			
Salact Revenue All New project			Experimental phasing			
			Molecular replacement			
ID Last n	10dified # of j	obs R-free	Model building			
real-space-renn Mar 2 sharid Mar 2						
tmp31 Mar 0	8 2019 09:55 0	0.1027	Refinement			
tmp30 Mar 0	5 2019 10:43 7		Cryo-EM			
tmp25 Feb 0	7 2019 06:32 4		Validation			
tmp24 Feb 0	5 2019 11:56 2	0.3555				
Lan Jan 3	0 2019 10:28 1		Comprehensive validation (X-ray/Neutron) Model quality assessment, including real-space correlation and geometry inspection using MolProbity tools			
tmp22 Jan 29	9 2019 09:47 4					
paper4 Jan 2	5 2019 11:19 AM 2	0.2520	Comprehensive validation (cnvo. EM)			
tmp11 Nov 2	1 2018 03:39 1		Model quality assessment including real-space correlation for cryo-EM			
tmp10 Nov 2	0 2018 08:02 9	0.2213	structures			
tmp07 Nov 1	9 2018 10:24 1		Structure composicon			
tmp09 Nov 1	9 2018 06:34 3		Structure comparison			
tmp08 Nov 1	8 2018 10:31 1	0.1900	multiple criteria			
1us0 Nov 1	8 2018 02:38 2	0.1032				
scott Nov 1	7 2018 08:07 1		Comparison of unmerced data quality with refined model, as described in			
KEuser Oct 2	8 2018 09:35 1		Karplus & Diederichs (2012)			
emma Oct 0	8 2018 02:34 1					
cele Oct 0	7 2018 08:08 1	0.3513	EMRinger			
5c11 Oct 04	4 2018 11:55 3	0.2819				
almu Oct 0	3 2018 08:25 2		Ligands			
Current directory: /Users/pafonine/Documents/real-space-refine-5ljv Browse						
PHENIX version dev-svn-000 Project: real-space-refine-5ljv						

Model validation

Cyclic Nucleotide Phosphodiesterase (2.4 Å)

Model validation

Cyclic Nucleotide Phosphodiesterase (2.4 Å)

Model validation

3zx9

Very unlikely Ramachandran plot!

Clashes – N/Q/H flips

Clashes – N/Q/H flips

Validation – Table 1 (Crystallography)

• Data

- Unit cell parameters & space group
- Data collection details (T, λ, instrument,...)
- Resolution & Completeness
- Ι/σΙ
- Redundancy
- Wilson B
- Various CC and R factors
- Model
 - Content (macromolecule, ligands, NCS, ...)
 - Bond/angle RMSDs
 - Molprobity:
 - Clashscore
 - Ramachandran plot (favorite, outliers)
 - Rotamer outliers
 - C-beta deviations
 - Incomplete residues
 - Solvent content
 - ADP (mean, Bonded <B_i-B_i>)
- Model-to-Data fit
 - R_{WORK}, R_{FREE}

Validation (cryo-EM)

		(CIVO-EM) (FIOJECI. Teal-space-renne-	5ijv_0)		
🔏 ? 🔅 (X ()				
eferences Help Run A	bort Ask for help				
put/Output ValidationCryoEM_1				4 ⊳	
un status Summary MolProbity	Model vs. Data Data			4 ⊳	
					1
			F	xport Table 1	
Topen in Coot				Aport rubic 1	1
					D RESEARCH PAPERS
					Acta Cryst. (2018). D 74 , 814-840
Model		Data			https://doi.org/10.1107/S2059798318009324
Composition (#)		Box			Cited by 71
Chains	2	Lengths (Å)	50.92, 68.34, 83.08		
Atoms	2500 (Hydrogens: 0)	Angles (°)	90.00, 90.00, 90.00		
Residues	Protein: 325 Nucleotide: 0	Supplied Resolution (Å)	3.6		2 Astron
Water	0	Resolution Estimates (Å)	Masked	Unmasked	
Ligands	MG: 1 ADP: 1	d FSC (half maps: 0.143)			
Bonds (BMSD)		d 99 (full/half1/half2)	3 7//	3 1//	
Length (Å) $(\# > 4\sigma)$	0.029 (146)	d model	3.7	3.7	
Angles (°) $(\# > 4\sigma)$	2 853 (122)	d FSC model (0/0 143/0 5)	3 4/3 5/3 6	3 4/3 6/3 9	New tools for the analysis and validation of cryo-EM
MolProhity score	3 14	Man min/max/mean	-0 42/0 80/0 03	5.175.075.5	maps and atomic models
Clash score	19.06				P. V. Afonine [®] , B. P. Klaholz [®] , N. W. Moriarty [®] , B. K.
Ramachandran plot (%)	15.00	Model vs. Data			Poon [®] , O. V. Sobolev [®] , T. C. Terwilliger [®] , P. D.
Outliers	3 10	CC (mask) = 0.83			Adams [®] and A. Urzhumtsev
Allowed	7 12	CC (hox) 0.55			Recent advances in the field of electron cryomicroscopy
Favored	89.78	CC (peaks) 0.34			(cryo-EM) have resulted in a rapidly increasing number of atomic model
Rotamer outliers (%)	11 57	CC (volume) = 0.83			biomacromolecules that have been solved using this technique and
CB outliers (%)	3.68	Mean CC for ligands 0.86			deposited in the Protein Data Bank and the Electron Microscopy Data Ba
Pentide plane (%)	5.00	Mean ee for figands 0.00			and maps are required. While some of these validation tools may be
Cis proline/general	5 6/0 0				borrowed from crystallography, new methods specifically designed for c
Twisted proline/general	11 1/0 7				EM validation are required. Here, new computational methods and tools
CaBLAM outliers (%)	2.18				phenix.auto sharpen to improve maps and phenix.mtriage to analyze c
ADP (B-factors)	2.10				EM maps. It is suggested that cryo-EM half-maps and masks should be
Iso/Aniso (#)	2500/0				deposited to facilitate the evaluation and validation of cryo-EM-derived
min/max/mean					atomic models and maps. The application of these tools to deposited cr
Protein	30.26/493.42/109.69				Les atomic models and maps is also presented.
Nucleotide					Keywords: cryo-EM; atomic models; model quality; data quality;
Ligand	57.57/99.69/75.15				validation; resolution.
Water					Read article Similar articles
Οςςμραρογ					
Mean	1.00				
occ = 1 (%)	100.00				
$0 < 0 \le 1.00$	0.00				
0 < 0 < 1 (%)	0.00				
SCC / I (/0)	0.00				
Idle		Pro	ject: real-space-refine-5ljv_	_0	

20 OPEN

Validation: model-to-map fit 3a5x (emd_1641) | 4.0Å | CC \approx 0

Validation: model-to-map fit

3j9e (emd_6240) | 3.3Å | CC = 0.85 | Year: 2015

Latest trends, developments and... issues

Latest trends and developments

- Validation metrics progressively become refinement goals
 - phenix.refine and phenix.real_space_refine use:
 - Ramachandran plot restraints
 - Cβ deviation restraints
 - Secondary structure restraints
 - Restraints on χ angles of amino-acid side-chain rotamers
- As result, validation becomes less capable of catching problems

Latest trends and developments

PNAS, 2019 116 (39) 19513-19522

Metric / F	6KS6		
Clashscor	lashscore		
Ramachandran (%)		favored	96.4
		outliers	0.2
Rotamer outliers (%)			0
C_{β} deviati	ons		0
RMSD	Bond (Å)	0.001	
	Angle (°)	0.396	
Resolutio	3.0		

• Perfect statistics

Latest trends and developments

• Is it a good plot?

Example: good vs bad plots

• A trained eye can distinguish good and bad plots

Example: poor plots

- Overall Ramachandran plot counts (favored/outlier/allowed) will not flag this
- A trained eye required to appreciate the issue
- How to tell good vs bad without looking at the plot?

Ramachandran plot Z-score

CABIOS

Vol. 13 no. 4 1997 Pages 425-430

Objectively judging the quality of a protein structure from a Ramachandran plot

Rob W.W.Hooft, Chris Sander and Gerrit Vriend

- Ramachandran Z-score is good at identifying odd-looking Ramachandran plots!
 - Used in PDBREDO and WhatCheck. Implemented in *Phenix* (Oleg Sobolev)
 - One number, simple criteria:
 - Z<-3: Poor
 - -3 < Z < -2: Suspicious
 - Z > -2: Good

Example: good vs bad plots

- Z<-3: Poor
- -3 < Z < -2: Suspicious
- Z > -2: Good

Example: odd plots

• Z > -2: Good

6KS6

RamaZ = -3.3

Ramachandran plot

PDB code 3NOQ, 1 Å

Valid Ramachandran plot outliers: justified by the data (density map)

Ramachandran plot facts

Ramachandran plot

Multiple interpretation of low-res maps

• Low-resolution maps allow non-unique interpretation

Model-map correlation coefficient (CC)

- Definition
 - With or w/o subtracting mean

$$CC(\rho_1,\rho_2) = \left(\sum_{\mathbf{n}} (\rho_1(\mathbf{n}))^2\right)^{-1/2} \left(\sum_{\mathbf{n}} (\rho_2(\mathbf{n}))^2\right)^{-1/2} \left(\sum_{\mathbf{n}} \rho_1(\mathbf{n}) \rho_2(\mathbf{n})\right)$$

$$CC(\rho_1,\rho_2) = \left(\sum_{\mathbf{n}} (\rho_1(\mathbf{n}) - \langle \rho_1 \rangle)^2\right)^{-1/2} \left(\sum_{\mathbf{n}} (\rho_2(\mathbf{n}) - \langle \rho_2 \rangle)^2\right)^{-1/2} \left(\sum_{\mathbf{n}} (\rho_1(\mathbf{n}) - \langle \rho_1 \rangle)(\rho_2(\mathbf{n}) - \langle \rho_2 \rangle)\right)$$

- How model map is calculated
 - Approximation (e.g. N-gaussian)
 - Form-factors (electron vs crystallographic, eg. X-ray)
 - Fourier map
 - Box or sphere of Fourier map coefficients
- Region in the map used to calculate CC
 - Whole box
 - Mask around atoms
 - Atom radius