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Cryo-EM tools in Phenix

Starting map Map improvement
Map symmetry

Map manipulation

Extract unique part

Docking, model building
RefinementValidation

Complete set of tools for 
cryo-EM structure solution: 

from initial reconstruction to 
final validated model 



Validation

Model Data

Cryo-EM Diffraction

Model to data fit

or

Validation = checking model, data and model-to-data fit are all 
make sense and obey to prior expectations



Validation tools: Crystallography vs Cryo-EM
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Validation

• Helps to save time

• Helps to produce better models

• Helps to set correct expectations



Validation
Validation for crystallography (X-ray, neutron) and cryo-EM



Cyclic Nucleotide Phosphodiesterase (2.4 Å) 

Model validation

Is it a good model?



Cyclic Nucleotide Phosphodiesterase (2.4 Å) 

Model validation

No. 
Too many steric clashes!



Model validation

3zx9

Very unlikely Ramachandran plot!



Clashes – N/Q/H flips



Clashes – N/Q/H flips



Validation – Table 1 (Crystallography)

• Data
• Unit cell parameters & space group
• Data collection details (T, λ, instrument,…)
• Resolution & Completeness
• I/σI
• Redundancy
• Wilson B
• Various CC and R factors

• Model
• Content (macromolecule, ligands, NCS, …)
• Bond/angle RMSDs
• Molprobity:
• Clashscore
• Ramachandran plot (favorite, outliers)
• Rotamer outliers
• C-beta deviations

• Incomplete residues
• Solvent content
• ADP (mean, Bonded <Bi-Bj>)

• Model-to-Data fit
• RWORK, RFREE

Page 2 Full wwPDB X-ray Structure Validation Report 1JH7

1 Overall quality at a glance i○

The following experimental techniques were used to determine the structure:
X-RAY DIFFRACTION

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in
the following graphic. The table shows the number of entries on which the scores are based.

Metric Whole archive
(#Entries)

Similar resolution
(#Entries, resolution range(Å))

Rfree 111664 3481 (2.40-2.40)
Clashscore 122126 3956 (2.40-2.40)

Ramachandran outliers 120053 3897 (2.40-2.40)
Sidechain outliers 120020 3898 (2.40-2.40)

RSRZ outliers 108989 3386 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the electron density. The red, orange, yellow and green segments on the lower bar indicate the
fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A
grey segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions <=5%
The upper red bar (where present) indicates the fraction of residues that have poor fit to the
electron density. The numeric value is given above the bar.

Mol Chain Length Quality of chain

1 A 189



Validation (cryo-EM)



Validation: model-to-map fit
3a5x (emd_1641) | 4.0Å | CC ≈ 0



Validation: model-to-map fit
3j9e (emd_6240) | 3.3Å | CC = 0.85 | Year: 2015



Latest trends, developments and… issues



Latest trends and developments

• Validation metrics progressively become refinement goals

• phenix.refine and phenix.real_space_refine use:

• Ramachandran plot restraints
• Cβ deviation restraints
• Secondary structure restraints
• Restraints on χ angles of amino-acid side-chain rotamers

• As result, validation becomes less capable of catching problems



Latest trends and developments

Metric / PDB code 6KS6

Clashscore 7.7

Ramachandran (%)
favored 96.4

outliers 0.2

Rotamer outliers (%) 0

Cβ deviations 0

RMSD
Bond (Å) 0.001

Angle (°) 0.396

Resolution (Å) 3.0

PNAS, 2019 116 (39) 19513-19522

• Perfect statistics



Latest trends and developments

• Is it a good plot?



Example: good vs bad plots

1us0  |  0.66 Å 5a9z  |  4.7 Å

• A trained eye can distinguish good and bad plots



Example: poor plots

• Overall Ramachandran plot counts (favored/outlier/allowed) will not flag this
• A trained eye required to appreciate the issue

• How to tell good vs bad without looking at the plot?

6bu9  |  6.8 Å 6dzv  |  4.2 Å 6cs1 |  4.6 Å



Ramachandran plot Z-score

• Ramachandran Z-score is good at identifying odd-looking
Ramachandran plots!
• Used in PDBREDO and WhatCheck. Implemented in Phenix (Oleg Sobolev)
• One number, simple criteria:

• Z<-3: Poor
• -3 < Z < -2: Suspicious
• Z > -2: Good



Example: good vs bad plots

1us0  |  0.66 Å 5a9z  |  4.7 Å

RamaZ = -0.5 RamaZ = -7.7
• Z<-3: Poor
• -3 < Z < -2: Suspicious
• Z > -2: Good



Example: odd plots

6bu9  |  6.8 Å 6dzv  |  4.2 Å 6cs1  |  4.6 Å

• Z<-3: Poor
• -3 < Z < -2: Suspicious
• Z > -2: Good

RamaZ = -5.0 RamaZ = -4.1 RamaZ = -4.2



6KS6

RamaZ = -3.3

• Z<-3: Poor
• -3 < Z < -2: Suspicious
• Z > -2: Good



Ramachandran plot

PDB code 3NOQ, 1 Å

Outliers:

(A, ILE, 152), (B, ILE, 154)

(A, ILE, 152)

Valid Ramachandran plot outliers: justified by the data (density map)



Ramachandran plot facts

local backbone conformation. For this, a

Conformation-Dependent Library (CDL) has been

developed46,47 and implemented in Phenix48 for pro-

tein refinement. The CDL relates the expected cova-

lent bond geometry to local backbone Ramachandran

conformation. Because the expected bond geometry

values in the CDL differ from those in the single-

value library (especially for the N-Ca-C s angle), Mol-

Probity validation now uses the CDL values for struc-

tures refined with the CDL, as detected from the

REMARK 3 information of a submitted file. Similarly,

for RNA, geometry targets are dependent on ribose

pucker.

Cis or twisted non-trans peptides
The peptide bond that joins adjacent amino-acid res-

idues in a protein has partial double-bond character

and therefore assumes a trans, or more rarely a cis,

configuration. The cis configuration is significantly

more common preceding a proline and results in a

unique Ramachandran distribution for cis-proline.

To maintain this special relationship, we associate

peptide bonds with their following residue. About

5% of prolines are cis, while only about 0.03% of all

non-proline residues are genuinely cis.
Recently, we were alerted to a surprising and

improbable increase in the number of cis non-proline

peptide bonds being modeled,49 as shown in the plot

(updated) of Figure 9(A). These are due to model-

building without consideration of prior probabilities,

but also in part due to the lack of validation that

flagged cis-nonPro peptides, in MolProbity or other

systems. We have therefore implemented a new vali-

dation and visual markup for non-trans peptides.

Matching the PDB definition, we define a cis peptide

as one with an x angle between 2308 and 1308, and

a trans peptide as one with an x angle>11508

or<21508. We add an additional definition of

“twisted peptides” for x angles that are more than

308 from planar. Justifiable twisted peptides are

even rarer than non-proline cis,50 and twisted pepti-

des should virtually always be considered modeling

errors.
MolProbity reports on non-trans peptides by

providing counts of cis prolines, cis non-prolines,

and twisted peptides. Counts of cis non-prolines or

twisted peptides that constitute a suspiciously high

percentage of the structure are flagged with yellow

or red in the summary statistics chart. In the multi-

criterion chart that reports on each residue individu-

ally, each non-trans residue is marked with its cate-

gory (cis Pro, cis nonPro, twisted Pro, twisted

nonPro) and the measured value of its omega pep-

tide dihedral. In the multi-criterion kinemage, each

non-trans peptide is marked with a surface that fills

in the trapezoidal shape between the backbone trace

Figure 8. The six Ramachandran plots currently used for backbone /,w validation by MolProbity, Phenix, and the wwPDB:

general case, Ile/Val, Gly, pre-Pro, trans Pro, and cis Pro. Based on a million quality-filtered residues in the Top8000 dataset.

Williams et al. PROTEIN SCIENCE VOL 27:293—315 305

Image from Jane and David Richardson, Duke University



Ramachandran plot



Multiple interpretation of low-res maps

• Low-resolution maps allow non-unique interpretation 

features that are present in the reference structure and not in
the experimental cryo-EM images. This aspect of model bias
has been discussed, for example, by van Heel (2013), Subra-
maniam (2013), Henderson (2013) and Mao et al. (2013), and
is beyond the scope of the current work.

3.8. Overfitting and multiple interpretation

Both the model-bias and overfitting problems in cryo-EM
have been discussed by Rosenthal & Rubinstein (2015).
Overfitting may result in a model that explains the data well
but is in fact incorrect, either in whole or in part. A classic
example is using a model with more parameters than data. In
the crystallographic process, since model bias is inherent and
the amount of observed data is often limited, both factors
contribute to potential overfitting. Introduction of cross-vali-
dation using a free R factor (Brünger, 1992) has provided tools
to identify and reduce the overfitting. However, the problem
becomes increasingly challenging with low-resolution data.

In cryo-EM the problem of overfitting occurs when atomic
model details are not confirmed by the experimental data

(map reconstruction) or simply match noise in the map. It is
worth thinking about the effective data content for crystallo-
graphic data and a cryo-EM map at the same resolution. In
crystallographic cases, if we consider a complex plane repre-
sentation of an observation in Fourier space, models with any
phase are all equally consistent with the data, where there is
often only amplitude information. In contrast, the cryo-EM
case has both amplitude and phase information from the
experiment, and the possible set of models is significantly
more constrained (there is about twice as much information in
the cryo-EM map if experimental phase information is not
present in the crystallographic case). In either case, however,
there is still the possibility of constructing models that have a
good fit to the data, especially with low-resolution data, but
are incorrect, at least in part.

Although a free R factor can be calculated for a cryo-EM
model, there are inherent challenges in this approach.
Conversion of the map to a reciprocal-space representation is
possible, but the R-factor value depends on the choice of the
box around the macromolecule, masking around the molecule,
use of the entire box of Fourier coefficients versus a sphere

research papers

Acta Cryst. (2018). D74, 814–840 Afonine et al. ! Analysis and validation of cryo-EM maps and atomic models 831

Figure 15
Illustration of multiple interpretation. (a) PDB entry 3J0R and the corresponding map (EMDB code 5352). (b) Ensemble of 100 perturbed models
obtained using MD; all models in the ensemble deviate from the starting model by 0.5 Å. (c) Real-space refined models obtained from (b) using
phenix.real_space_refine. (d) Distribution of model–map correlation for refined models. (e) Distribution of r.m.s. deviations between starting and refined
models.
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often only amplitude information. In contrast, the cryo-EM
case has both amplitude and phase information from the
experiment, and the possible set of models is significantly
more constrained (there is about twice as much information in
the cryo-EM map if experimental phase information is not
present in the crystallographic case). In either case, however,
there is still the possibility of constructing models that have a
good fit to the data, especially with low-resolution data, but
are incorrect, at least in part.

Although a free R factor can be calculated for a cryo-EM
model, there are inherent challenges in this approach.
Conversion of the map to a reciprocal-space representation is
possible, but the R-factor value depends on the choice of the
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Figure 15
Illustration of multiple interpretation. (a) PDB entry 3J0R and the corresponding map (EMDB code 5352). (b) Ensemble of 100 perturbed models
obtained using MD; all models in the ensemble deviate from the starting model by 0.5 Å. (c) Real-space refined models obtained from (b) using
phenix.real_space_refine. (d) Distribution of model–map correlation for refined models. (e) Distribution of r.m.s. deviations between starting and refined
models.

phenix.mia



Model-map correlation coefficient (CC)
• Definition

• With or w/o subtracting mean

• How model map is calculated
• Approximation (e.g. N-gaussian)
• Form-factors (electron vs crystallographic, eg. X-ray)
• Fourier map
• Box or sphere of Fourier map coefficients

• Region in the map used to calculate CC
• Whole box
• Mask around atoms
• Atom radius
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