

Tools for Easy and Difficult Problems: Automation of Structure Determination by Macromolecular Crystallography

Indo-US workshop on Macromolecular Structure Determination Feb. 21-24, 2011

Tom Terwilliger Los Alamos National Laboratory

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with X-rays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

←───

1.5 mm

Los Alamos Bioscience Division

Mounting crystals in nylon loops and cryo-cooling them

Bioscience Division

Advanced Light Source, Berkeley, CA

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division Ċrystal goes here

X-ray

beam

A brief introduction to X-ray crystallography

Growing protein crystals

Looking at crystals with X-rays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Getting pictures of proteins from diffraction spots

Diffraction pattern

Analysis of diffraction spots

Picture and model of macromolecule

The intensities of X-ray diffraction spots depend on what is in the crystal

Electrons in a protein crystal (ρ is high where there are many electrons)

Diffraction pattern $(I_h \text{ is intensity of spot "h"})$

$$\rho(x) = \sum_{h} F_{h} e^{i\phi_{h}} e^{-2\pi i h x}$$

$$F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx \qquad I_h = F_h^2$$

We can almost calculate a picture of where the atoms are from the diffraction pattern (but are missing the phases of diffraction spots)

ho(x) (Where the atoms are)

 F_h is square root of measured intensity of spot *h*

 $\rho(x) = \sum_{h} F_{h} e^{i\phi_{h}} e^{-2\pi i hx}$

We do not know the phase (ϕ_h)

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

First figure out where the Se atoms are located

Then use the Se atoms and the diffraction intensities to draw a picture of all the atoms

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

Intensity o<u>f</u> diffraction spot

$$I_h = \left| \mathbf{F}_{\mathbf{h}} \right|^2$$

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

<u>Waveleng</u>	th Scattering density	<u>Structure Factor</u>	diffraction spot
λ_{1}	$\rho(x)$	$\mathbf{F}_{\mathbf{h}} = F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx$	$\boldsymbol{I}_h = \left \mathbf{F}_{\mathbf{h}} \right ^2$
λ_2	$\rho'(x) = \rho(x) + \Delta \rho(x)$	$\mathbf{F}_{\mathbf{h}}' = \mathbf{F}_{\mathbf{h}} + \Delta \mathbf{F}_{\mathbf{h}}$	$I_h' = \left \mathbf{F_h} + \Delta \mathbf{F_h} \right ^2$

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

How to figure out where the Se atoms are:

Assume that structure factors for Se are similar to changes between wavelengths:

 $\left| \Delta \mathbf{F}_{\mathbf{h}} \right| \approx \left| F_{h}' - F_{h} \right|$

Then use techniques from small-molecule crystallography to find the Se atoms (guess locations, compare calculated and observed ΔF_h , update guess)

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

<u>Wavelengi</u>	th <u>Scattering density</u>	<u>Structure Factor</u>	diffraction spot
λ_1	$\rho(x)$	$\mathbf{F}_{\mathbf{h}} = F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx$	$\boldsymbol{I}_h = \left \mathbf{F}_{\mathbf{h}} \right ^2$
λ_2	$\rho'(x) = \rho(x) + \Delta \rho(x)$	$\mathbf{F}_{\mathbf{h}}' = \mathbf{F}_{\mathbf{h}} + \Delta \mathbf{F}_{\mathbf{h}}$	$\boldsymbol{I'_h} = \left \mathbf{F_h} + \Delta \mathbf{F_h} \right ^2$

If we know where the Se atoms are ...

we know:
$$\Delta \rho(x)$$

...so we can calculate: $\Delta \mathbf{F}_{\mathbf{h}}$
and the phase (ϕ_h) must satisfy: $I'_h = \left| I_h^{1/2} e^{i\phi_h} + \Delta \mathbf{F}_{\mathbf{h}} \right|^2$

Many ways to find the phases

Method	Source of phasing information
SIR – single isomorphous replacement	A few heavy atoms (e.g., Hg, Au) in "derivative" contribute to differences from "native"
SAD – single-wavelength anomalous diffraction	A few atoms (e.g., Se, I, Hg atoms) contribute to "anomalous" differences in diffraction between spot <i>h</i> and spot <i>-h</i>
MAD – multiple-wavelength anomalous diffraction	A few atoms contribute to anomalous and wavelength-dependent "dispersive" differences
SIRAS, MIR	Combinations of SIR and SAD
Molecular replacement	Molecular location and phases are found using a related molecule as a template
Direct methods	Guess where atoms are, good guesses match the measured structure factors

Automation of structure determination

Automation...

makes straightforward cases accessible to a wider group of structural biologists

makes difficult cases more feasible for experts

can speed up the process

can help reduce errors

Automation also allows you to...

try more possibilities

estimate uncertainties

Requirements for automation of structure determination of macromolecules by X-ray crystallography

- (1) Software carrying out individual steps
- (2) Seamless connections between steps
- (3) A way to decide what is good
- (4) Strategies for structure determination and decisionmaking

Why we need good measures of the quality of an electrondensity map:

Which solution is best?

Are we on the right track?

If map is good:

It is easy

Why we need good measures of the quality of an electrondensity map:

Which solution is best?

Are we on the right track?

If map is good: It is easy

Histogram of electron density values has a positive "skew"

Skew of electron density for poor and good maps

Evaluating electron density maps

Basis	Good map	Random map	
Skew of density (Podjarny, 1977)	Highly skewed (very positive at positions of atoms, zero elsewhere)	Gaussian histogram	
Connectivity of regions of high density (Baker, Krukowski, & Agard, 1993)	A few connected regions can trace entire molecule	Many very short connected regions	
Correlation of local rms densities (Terwilliger, 1999)	Neighboring regions in map have similar rms densities	Map has uniform rms density	
R-factor in 1 st cycle of density modification (Cowtan, 1996)	Low R-factor	High R-factor	

Which scoring criteria best reflect the quality of a map?

Create real maps

Score the maps with each criteria

Compare the scores with the actual quality of the maps

Creating real maps

247 MAD, SAD, MIR datasets with final model available (PHENIX library and JCSG publicly-available data)

Run AutoSol Wizard on each dataset.

Calculate maps for each solution considered (opposing hands, additional sites, including various derivatives for MIR)

Score maps based on each criteria

Calculate map correlation coefficient (CC) to model map (no density modification, shift origin if necessary)

Model map 1VQB, 2.6 Å, SG C2

SOLVE MAD map CC=0.62

Inverse-hand map CC=0.55

Skew of electron density – positive skew of density values

How accurate are estimates of map quality?

Estimated quality

Cross-validated estimates of quality

Estimated map quality in practice Evaluating solutions to a 2-wavelength MAD experiment (JCSG Tm3681, 1VPM, SeMet 1.6 Å data)

Data for HYSS	Sites	Estimated CC ± 2SD	Actual CC
Peak	12	0.73 ± 0.04	0.72 ←
Peak (inverse hand)	12	0.11 ± 0.43	0.04
F _A	12	0.73 ± 0.03	0.72
F _A (inverse)	12	0.11 ± 0.42	0.04
Sites from diff Fourie	er 9	0.70 ± 0.17	0.69

Statistical density modification (RESOLVE)

•Principle: phase probability information from probability of the map and from experiment:

•P(ϕ) = P_{map probability}(ϕ) P_{experiment}(ϕ)

• "Phases that lead to a believable map are more probable than those that do not"

•A believable map is a map that has...

- •a relatively flat solvent region
- •NCS (if appropriate)

•A distribution of densities like those of model proteins

•Method:

- -calculate how map probability varies with electron density $\boldsymbol{\rho}$
- -deduce how map probability varies with phase φ -combine with experimental phase information

Map probability phasing: Getting a new probability distribution for each phase given estimates of all others

- 1. (flat far from center)
- Calculate map with current 2 estimates of all structure factors except one (k)
- Identify expected features of map 3. Test all possible phases ϕ for structure factor k (for each phase, calculate new map including k)
 - 4. Probability of phase ϕ estimated from agreement of map with expectations
 - 5. Phase probability of reflection k from map is independent of starting phase probability because reflection k is omitted from the map

A function that is (relatively) flat far from the origin

> Function calculated from estimates of all structure factors but one (k)

Test each possible phase of structure factor k. $P(\phi)$ is high for phase that leads to flat region

A map-probability function – allowing different weighting of information from different parts of the map

Log-probability of the map is sum over all points in map of local log-probability

$$LL^{MAP}({\mathbf{F_h}}) \approx \frac{N_{\mathbf{REF}}}{V} \int_{\mathbf{V}} LL(\rho(\mathbf{x}, {\mathbf{F_h}})) d^3\mathbf{x}$$

A map with a flat (blank) solvent region is a likely map

Local log-probability is believability of the value of electron density ($\rho(x)$) found at this point

 $LL(\rho(\mathbf{x}, \{\mathbf{F}_{\mathbf{h}}\})) = \ln[p(\rho(\mathbf{x})|PROT)p_{PROT}(\mathbf{x}) + p(\rho(\mathbf{x})|SOLV)p_{SOLV}(\mathbf{x})]$

If the point is in the PROTEIN region, most values of electron density (ρ (x)) are believable If the point is in the SOLVENT region, only values of electron density near zero are believable
Statistical density modification (nsf-N SAD map , 2Å, no NCS, 50% solvent)

Statistical density modification with cross-crystal averaging Cell receptor at 3.5/3.7 Å. Data courtesy of J. Zhu

Crystal 1 (4 copies)

Crystal 2 (2 copies)

RESOLVE density modification

PHENIX Multi-crystal averaging

Structure solution with phenix.autosol

AutoSol – fully automatic tests with structure library (SAD datasets, HYSS, Phaser) RESOLVE/ phase_and_build maps

AutoSol – fully automatic tests with structure library (SAD datasets, HYSS, Phaser) RESOLVE/ phase_and_build maps

Iterative density modification, model-building and refinement with phenix.autobuild

RESOLVE model-building at moderate resolution

•FFT-based identification of helices and strands

- •Extension with tripeptide libraries
- •Probabilistic sequence alignment
- •Automatic molecular assembly

Initial model-building – strand fragments

Chain extension (result: many overlapping fragments)

Main-chain as a series of fragments (choosing the best fragment at each location)

Side-chain template matching to identify sequence alignment to map (IF5A data) Relative probability for each amino acid at each position (Correct amino acids in bold)

#	G	Α	S	v	I	L	Μ	С	F	Υ	κ	R	w	н	Е	D	Q	Ν	Р	т
1	6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1	4
2	4	11	14	37	5	2	0	2	0	0	2	3	0	0	1	2	0	0	0	6
3	11	23	5	12	5	3	2	0	1	3	7	3	1	0	5	3	2	0	2	2
4	7	9	6	16	8	5	2	0	1	3	8	4	1	0	7	6	2	0	3	4
5	31	7	3	7	4	2	1	0	1	3	5	4	1	0	6	2	2	0	11	1
6	1	3	3	41	14	8	0	0	0	0	2	1	0	0	2	4	0	0	1	9
7	0	0	0	0	0	0	0	0	15	63	1	0	17	1	0	0	0	0	0	0
8	2	3	6	23	10	6	2	1	0	1	4	3	0	0	5	16	1	0	1	6
9	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Addition of side-chains to fixed main-chain positions

AutoBuild – tests with structure library Fully automated iterative model-building, final R/Rfree

Rapid building of models for regions containing regular secondary-structure

Helices:

Identification: rods of density at low resolution

Strands:

Identification: β structure as nearly-parallel pairs of tubes

Any protein chains (trace_chain):

Identification: $C\alpha$ positions consistent with density and geometry of protein chains

RNA/DNA:

Identification: match of density to averaged A or B-form template

Model α -helix; 3 Å map

Model α -helix; 7 Å map

Trace main-chain with ideal helix, allowing curvature

Identify direction and C α position from overlap with 4 Å radius helices offset +/- 1 Å from main-chain

Finding helices in 1T5S SAD map (3.1 Å)

 C_{α} tracing (mevalonate kinase, PDB entry 1KKH, 9 sec)

Building RNA Group II intron at 3.5 Å. Data courtesy of J. Doudna

Rapid phase improvement and model-building with phenix.phase_and_build

phenix.phase_and_build – tests with structure library Final R/Rfree

phase_and_build – tests with structure library One cycle (approx 500 residues/hour)

What can you do with automated procedures for structure solution and model-building?

If a task is modular and automated...

you can run it many times

...checking different space groups, datasets to use

...checking if your model is biasing your map

...checking if you always get the same model

Iterative-Build OMIT procedure *"Is the density in my map biased by the model?"*

2mFo-DFc omit map

After building outside OMIT region 10 cycles

1HP7 molecular replacement with 1AS4 R/Rfree after initial refinement: 0.41/0.48

Iterative-Build OMIT procedure "Removing model bias"

2mFo-DFc map Phased with 1zen model

Iterative-Build OMIT procedure "Removing model bias"

+-

2mFo-DFc omit map Phased with 1zen model

Iterative-Build OMIT procedure "Removing model bias"

2mFo-DFc SA-omit map Phased starting with 1zen model

Iterative-Build OMIT procedure "Removing model bias"

2mFo-DFc iterative-build omit map Phased starting with 1zen model

Multiple-model representation of uncertainties

20 models built for 1CQP, no waters, Dmin=2.6 A R=0.19-0.20; Rfree=0.26-0.27

The variation among models is a lower bound on their uncertainty

Building 20 models for each of 10 structures

->The RMSD among models tells us (a lower bound on) the uncertainty in our models

(It is not the RMSD of true structures in the crystal)

Rebuild with 4.5 Å data

Rebuild with 1.75 Å data

Complementarity of PHENIX and Rosetta model-building (Randy Read, David Baker, Frank DiMaio)

Characteristic		Crystallographic model-building (PHENIX)	Structure-modeling (Rosetta)
Optimization	\rightarrow	Interpretation of patterns of density	Creating physically plausible models
Model-building approach	\rightarrow	Density search for regular secondary structure	Ab-initio modeling or homology modeling
Fragment libraries	\rightarrow	3-residue fragment library	3- and 9-residue libraries
Model-building target	\rightarrow	Fit to density	Rosetta force field with density term
Refinement target	\rightarrow	Structure-factor likelihood refinement target	Rosetta force field with density term

Combining structure-modeling with crystallographic model-building

20 templates for 1XVQ from PDB (optimally superimposed)

Molecular replacement using distant homology models with PHENIX and Rosetta (phenix.mr_rosetta)

Setup and model preparation

Molecular replacement using distant homology models with PHENIX and Rosetta (phenix.mr_rosetta)

Molecular replacement and model-building

Structure determination of cab55348 (using template supplied by user) 1.9 A, 28% sequence identity (AutoMR alone fails with R/Rfree=0.47/0.53) MR model: blue, Final model: green

AutoBuild model cycle 2

Rebuilding in a poor section of the starting model

Wizards

•AutoSol Wizard: Structure solution (MIR/MAD/SAD) with HYSS/Phaser/Solve/ Resolve

•AutoBuild Wizard: Iterative density modification, model-building and refinement with Resolve/phenix.refine/Elbow; model rebuilding in place; touch-up of model; simple OMIT; SA-OMIT; Iterative-build OMIT; OMIT around atoms in a PDB file; protein, RNA, DNA model-building

•LigandFit Wizard: automated fitting of flexible ligands

•AutoMR Wizard: Phaser molecular replacement followed by automatic rebuilding

MODEL-BUILDING TOOLS

•phenix.find_ncs: Find and evaluate NCS from density, heavy-atom sites, or model

•phenix.apply_ncs: Apply NCS operators to a single chain

•phenix.build_one_model: Resolve rapid model-building with real-space refinement

•phenix.phase_and_build: Improve map by model-building and refinement, then build full model

 phenix.find_helices_strands: Trace chain or build secondary structure from a map

•phenix.mr_rosetta: Combine Rosetta structure-modeling with Phenix

REFINEMENT AND TOOLS

•phenix.refine: fully automatic/fully flexible refinement, SA-refinement, NCS identification, TLS, torsion-angle refinement, twin refinement

•phenix.xtriage: twinning, twin laws, anisotropy, anomalous signal, outliers, space group

•phenix.builder: ligand structures and CIF definitions from SMILES, PDB....

•phenix.ligand_identification: identify ligand density with class-specific libraries

 phenix.validation, phenix.model_vs_data, phenix.real_space_correlation, phenix.get_cc_mtz_mtz: Molprobity and density analysis of structures and density maps

•phenix.pdbtools, phenix.reflection_file_editor: manipulate PDB and mtz files

•...and many more: see phenix.doc and www.phenix-online.org

The PHENIX Project

Lawrence Berkeley Laboratory

