Experimental Phasing

Macromolecular Crystallography School Madrid, May 2017

Paul Adams

Lawrence Berkeley Laboratory and Department of Bioengineering UC Berkeley

The Crystallographic Process

The Phase Problem

- We want to get an image of the electron density in the crystal
 - Which we can then interpret to generate an atomic model
- The electron density = $FT(F_{obs}, \phi)$
 - But we can't measure the phase
- Therefore the phases need to be derived using amplitude information alone

What can we get from amplitudes?

- The Patterson function (only requires F_{obs}):
 - Gives a map containing all of the vectors between atoms
 - N atoms in the cell gives rise to N² peaks
 - For a small structure (~10 atoms)
 - A small number of peaks, atomic positions can be found from the vectors
 - For a macromolecular structure:
 - Many peaks (3000 atoms gives 9 million peaks), interpretation of the vectors in not
 possible
- Solution:
 - Make the macromolecular case more like a small molecule
 - Locate the positions of a small number of atoms (a substructure)
 - Leads to isomorphous replacement or anomalous diffraction methods

Phasing Experiments

- Multiple isomorphous replacement (MIR)
 - Native data and data from at least 2 crystals soaked with heavy atom solution. Nonisomorphism limits phasing.
- MIR plus anomalous signal (MIRAS/SIRAS)
 - Native data and data from at least I crystal soaked with an anomalously scattering heavy atom. Non-isomorphism limits phasing.
- Multi-wavelength anomalous diffraction (MAD)
 - One crystal with an anomalous scatterer, data collected at different wavelengths. Requires a tunable X-ray source. Non-isomorphism is not a major problem (only I crystal).*
- Single isomorphous replacement (SIR)
 - Native data and data from I derivative soaked with heavy atom solution. Nonisomorphism limits phasing.
- Single wavelength (SAD)
 - One crystal with an anomalous scatterer, data collected at one wavelength with a high anomalous signal.

Isomorphous Differences

- Magnitude of differences
 - Can be large (20%+)
- Typically electron dense elements such as mercury, platinum, gold, uranium are used.
- The differences between sulphur and selenium are significant enough to solve a structure.

R

Images from Randy Read, Cambridge University

Anomalous Scattering

Anomalous Scattering

Anomalously Scattering Atoms

- All atoms exhibit anomalous scattering
- Practically, not all edges are accessible at wavelengths routinely available and useful for crystallography (6keV to 17keV)
- Experiments do not have to be performed at the edge

Measuring Anomalous Scattering

- The fluorescence scattering increases rapidly near the absorption edge
- This can be measured using an X-ray fluorescence detector and varying the wavelength
- The anomalous scattering parameters, f' and f", can be obtained by calculating the first and second derivatives of the fluorescence curve (the Kramers-Kronig transform)
- The sharpness and features of the fluorescence scan will vary between elements

Macromolecular Crystallography Group, SSRL

MAD Data Collection

- Inflection point: maximizes f', has moderate f" contribution
- Peak: maximizes f", has low f' contribution
- High energy remote: has modest contribution for f' and f"
- Low energy remote: minimizes f' and f"
- There are multiple approaches to data collection
- How many wavelengths, which order, wedges?
- The maximal anomalous contribution (the peak) is also likely to be the wavelength with maximal radiation damage for the anomalous scatterer

Multi-wavelength Anomalous Diffraction

- Non-isomorphism not a significant problem
 - Except for radiation damage
- Correlated errors between wavelengths are a problem
 - c.f. several derivatives with the same substructure sites

Solutions to the Unknown Phase

- The agreement between the measurements and calculated information is greatest when the amplitude circles intersect.
- Note that if there are only two measurements there are two solutions.
- This assumes that there are no errors and that the amplitudes are such that the circles do intersect

Images from G. Taylor, Acta Cryst. D, 59, 1881-1890 (2003)

Goal of Phasing

- The goal in phasing is to generate a set of phases that are consistent with the observed data and the heavy atom model
- The phases should minimize the lack-of-closure
- There are many observations and only a few model parameters
- However, there are many unknowns (phases)

Phase Probability Distributions

- The phase information is described by a phase probability distribution.
- This is calculated from the lack-of-closure at each phase angle.
- The best phase is defined as the centroid of the distribution.
- The figure-of-merit (FOM) describes the width of the distribution

Images from G. Taylor, Acta Cryst. D, 59, 1881-1890 (2003)

Phase Probability Distributions

- Phase probability distributions are typically represented with Hendrickson-Lattman coefficients (an approximation to Gaussians using sine/cosine terms – 4 in total).
- The probability distributions can be easily multiplied by simple mathematical operations on the HL coefficients.
- HL coefficients contain more information than a centroid phase and figure-of-merit.
- The contribution from the heavy atom model can be included

Images from G. Taylor, Acta Cryst. D, 59, 1881-1890 (2003)

Single-wavelength Anomalous Data

- Single-anomalous diffraction is a special case of MAD
- Requires less wavelengths, but higher redundancy
- Has an implicit phase ambiguity, which needs to be resolved
- Is used to solve more than 50% of experimentally phased structures annually Images from G. Taylor, Acta Cryst. D, 59, 1881-1890 (2003)

Resolving the Phase Ambiguity

- SAD phases are bimodal
- Centroid phases can be calculated
- The map produced is the superposition of the "correct" structure and noise
- The noise is removed by iterative filtering (density modification)

ISAS procedure: B.C.Wang, Methods in Enzymology, 1985

Overview of Experimental Phasing

• Phasing typically relies on small differences between measured amplitudes

Automation

Data collection

Screening Data processing Data analysis Structure Solution

- Automation can increase efficiency, and reduce human error
- Education becomes even more important

Why Automation?

- Can speed up the process and can help reduce errors
- Software can try more possibilities than we are typically willing to bother with
- Makes difficult cases more feasible for experts
- Routine structure solution cases are accessible to a wider group of (structural) biologists
- Multiple trials or use of different parameters can be used to estimate uncertainties
- What is required:
 - Software carrying out individual steps
 - Integration between the steps (collaboration between developers)
 - Algorithms to decide which is best from a list of possible results
 - The computer has to make the decisions
 - Strategies for structure determination and decision-making

AutoSol Procedure

Terwilliger et al: Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Cryst. 2009, D65:582-601.

Automated Assessment of Map Quality

- 246 MAD, SAD, MIR datasets with final model available:
 - PHENIX library & JCSG publicly-available data
- Run AutoSol Wizard on each dataset
- Generate statistics for each solution considered:
 - Opposing hands, Additional sites, Inclusion of various derivatives for MIR

Tom Terwilliger, Los Alamos National Laboratory

Using Scores to Estimate Map Quality

- Measure skew of electron density map
- Calculate correlation of map to "correct" map
- Create lookup table to estimate correlation and standard deviation for any new map

Tom Terwilliger, Los Alamos National Laboratory

How Accurate are the Estimates of Quality?

Estimated Quality

 By considering multiple scoring criteria it is possible to generate a reliable automated scoring mechanism

Tom Terwilliger, Los Alamos National Laboratory

How Competitive is Automated Solution?

P

Tom Terwilliger, Paul Adams

How Well Does This Work?

Tom Terwilliger, Paul Adams

Structure Solution with Weak SAD Signal

- Tom Terwilliger (Los Alamos National Laboratory)
- Gábor Bunkóczi, Airlie McCoy, Randy Read (Cambridge University)
- Nat Echols, Ralf Grosse-Kunstleve (Lawrence Berkeley Lab)

Structure Solution from Weak Anomalous Data

- Low anomalous signal-to-noise:
 - Few anomalous scatterers
 - Sulfur SAD
 - Weak diffraction
 - Wavelength far from peak
- Impact:
 - Substructure identification is difficult
 - Phasing is poor
 - Iterative density modification, model-building and refinement works poorly

Anomalous Signal-to-noise

Locating the Substructure

- Current approaches:
 - Anomalous Difference Patterson seeding
 - Direct methods (Rantan)
 - Dual-space methods (Shelxd, HySS, Crunch2, SnB)
 - Difference Fourier (Solve)
- Instead, most powerful source of information about the substructure before phases are known is the SAD likelihood function:
 - The likelihood of measuring the observed anomalous data given a partial model

Using the SAD Likelihood Function

- Start with a guess about the anomalous substructure
 - From anomalous difference Patterson
 - Random
 - Any other source
- Find additional sites that increase the likelihood
 - Completion based on log-likelihood gradient maps*
 - Iterative addition of sites
 - Related to using a difference Fourier but much better

* La Fortelle, E. de & Bricogne, G. (1997). Methods Enzymol. 276, 472-494
 McCoy, A. J. & Read, R. J. (2010). Acta Cryst. D66, 458-469.

Making use of LLG in HySS

- Range of Resolutions
- Number of Patterson Peaks

- Adjust LLG Sigma (cutoff for peak height)
- Run quick direct methods first
- LLG scoring
- Terminate early if same solution found several times

Grosse-Kunstleve RW, Adams PD: Substructure search procedures for macromolecular structures. Acta Cryst. 2003, D59:1966-1973

Direct methods vs LLG completion

Direct methods vs LLG completion

Summary of New Features in HySS

- Initiation of search with Patterson solutions, input sites, or randomized input sites
- LLG completion from Patterson solutions or direct methods solutions
- Parallel execution of searches
- Automation of search over resolution, direct methods, and Phaser completion
- Termination if same solution is found from different Patterson seeds at same resolution

Structure Solution with Weak Signal

- AutoSol
 - Substructure solution, phasing, density modification, preliminary model-building
- AutoBuild
 - Iterative model-building, refinement, density modification
- Parallel AutoBuild
 - Parallel runs of AutoBuild with map averaging and picking best models

AutoSol structure solution

AutoSol structure solution

AutoBuild Model Building

AutoBuild Model Building

Holton Challenge Data - Known Sites

Map correlation

Progress

Anomalous signal

Acknowledgments

Lawrence Berkeley Laboratory

 Pavel Afonine, Youval Dar, Nat Echols, Jeff Headd, Richard Gildea, Ralf Grosse-Kunstleve, Dorothee Liebschner, Nigel Moriarty, Nader Morshed, Billy Poon, Ian Rees, Nicholas Sauter, Oleg Sobolev, Peter Zwart

Los Alamos National Laboratory

Tom Terwilliger, Li-Wei Hung

• Cambridge University

 Randy Read, Airlie McCoy, Laurent Storoni, Gabor Bunkoczi, Robert Oeffner

Duke University

 Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Christopher Williams, Bryan Arendall, Laura Murray, Gary Kapral, Dan Keedy, Swati Jain, Bradley Hintze, Lindsay Deis, Lizbeth Videau

University of Washington

• Frank DiMaio, David Baker

• Oak Ridge National Laboratory

• Marat Mustyakimov, Paul Langan

Others

- Alexandre Urzhumtsev & Vladimir Lunin
- Garib Murshudov & Alexi Vagin
- Kevin Cowtan, Paul Emsley, Bernhard Lohkamp
- David Abrahams
- PHENIX Testers & Users: James Fraser, Herb Klei, Warren Delano, William Scott, Joel Bard, Bob Nolte, Frank von Delft, Scott Classen, Ben Eisenbraun, Phil Evans, Felix Frolow, Christine Gee, Miguel Ortiz-Lombardia, Blaine Mooers, Daniil Prigozhin, Miles Pufall, Edward Snell, Eugene Valkov, Erik Vogan, Andre White, and many more

Funding:

- NIH/NIGMS:
 - P01GM063210, P50GM062412, P01GM064692, R01GM071939
- Lawrence Berkeley Laboratory
- PHENIX Industrial Consortium

