
Computational Crystallography Initiative

Automated structure refinement with phenix.refine

Pavel Afonine

Computation Crystallography Initiative
Physical Biosciences Division

Lawrence Berkeley National Laboratory, Berkeley CA, USA

Crystallographic structure refinement

  Today’s choices for refinement programs

-  SHELX
-  REFMAC
-  CNS
-  BUSTER-TNT
-  MOPRO
-  phenix.refine

  Focus of next slides is:

phenix.refine: a highly-automated state-of-the-art structure refinement
program which is part of PHENIX package

 Development mainly at Lawrence Berkeley National Lab (USA):

Paul Adams, Pavel Afonine, Nathaniel Echols, Ralf Grosse-
Kunstleve, Jeff Headd, Nigel Moriarty, Peter Zwart
+ valuable contribution by many others (Marat Mustyakimov, Sasha
Urzhumtsev, Vladimir Lunin, …)

Automation of structure refinement

  What used to be in the past … and often still the case nowadays

  Clearly, the modern software should do all these steps automatically

  This is one of the goals of phenix.refine

Acta Cryst. (2002). D58, 2009-2017, Yousef et al.

Automation of structure refinement

Wang et al., Acta Cryst. (2007). D63, 1254-1268

phenix.refine: single program for a very broad range of resolutions

• Group ADP refinement
• Rigid body refinement
• Torsion Angle dynamics
• Reference model
• Ramachandran plot restraints
• Secondary structure restraints

• Restrained/constrained
refinement of individual
parameters

• Automatic water update

• Automatic NCS restraints
• Simulated Annealing
• Automatic side chain rotamer fixing
• Occupancies (individual, group, automatic
constrains for alternative conformations)

• Various targets: LS, ML, MLHL,…
• Dual (real/reciprocal) space refinement

 Low Medium and High Subatomic

• TLS refinement with automated TLS
groups identification

• Use hydrogens at any resolution

• Refinement with twinned data

• X-ray, Neutron, joint X-ray + Neutron

• Bond density model
• Unrestrained refinement
• FFT or direct
• Explicit hydrogens

Refine any part of a model with any strategy: all in one run

+ Automatic water picking
+ Simulated Annealing

+ Add and use hydrogens

Running phenix.refine

  Designed to be very easy to use

  Several ways of running:

-  command line version:

phenix.refine model.pdb data.hkl [parameters]

o  Can be highly customized (more than 300 parameters available to change)

-  can be called from (a Python) script allowing to run it within different
contexts

-  GUI version

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation

Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)

ADP refinement
(TLS, group, individual iso / aniso)

Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

  Input data: can be intensities: French&Wilson method is used to convert Iobs to Fobs
– no need to run Truncate

- remove “bad” water:
•  2mFo-DFc (peak height)
•  distances
•  map CC (2mFo-DFc, Fc)
•  B-factors and anisotropy
•  occupancy

- add new:
•  mFo-DFc,
•  distances

- pre-refine water parameters

Automatic Water Picking

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (water picking)

Target weights calculation

Coordinate refinement
(rigid body, individual) (minimization or SA)

ADP refinement
(TLS, group, individual iso / aniso)

Occupancy refinement (individual, group)

Output: Refined model, various maps,
structure factors, complete statistics, ready for
deposition PDB file

  Water is updated (add/remove/refine) automatically as part of refinement run:

  No need to do it as a separate step using external tools

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation

Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)

ADP refinement
(TLS, group, individual iso / aniso)

Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

Refinement target profile

Rigid body refinement

Low Resolution High

Solution

  Rigid body refinement challenges:
-  Need to use low resolution reflections to achieve a solution

o  Using too low resolution may not be good
o  Need to use higher resolution data to assure better solution
o  How to define low-high resolution border (3…4…6A)?

  PHENIX MZ protocol makes all these decisions automatically

?

Automatic multiple-zone rigid-body refinement with a large convergence radius.
P. V. Afonine, R. W. Grosse-Kunstleve, A. Urzhumtsev and P. D. Adams. J. Appl. Cryst. 42, 607-615 (2009)

False
solutions

Automated Rigid Body Refinement in PHENIX (MZ protocol)

 Resolution

Automatically define
lowest usable resolution
zone

This insures quick and
reliable convergence

Gradually add higher resolution reflections. This supports
convergence and assures higher precision of the solution.

Lowest Low High Highest

During rigid body refinement some large model movements are expected.
This invalidates the solvent mask, so the bulk-solvent model is updated at each step.

  All parameters used in the protocol are optimized to achieve the highest
convergence radius at minimal runtime.

-  This is done by the grid search over ~100000 trial refinements using more than
100 different structures.

Local real-space refinement (fix_rotamers)

Update structure factors and maps

Compute maps

for residue in residues:
 if residue_needs_a_fix:
 for rotamer in rotamers:
 for each rotamer do local torsion search
 if rotamer_is_better:
 residue = rotamer

-  Real-space-refine residue
-  Update structure with improved residue

N
 m

acro-cycles

Validate changes:
-  Update maps
-  For each changed residue make sure it

has better scores than before the change,
otherwise restore to previous state

phenix.refine protocol

Automatic side chain flips to avoid bad clashes

  phenix.refine always applies side chain flips automatically (Asn/Gln/His)

 Bad Good

Test refinements: distorted models
  Distorted models (150 randomly picked from PDB structures at resolutions

from 1.5 to 3Å):

1.  Remove water

2.  For each residue select the most distant rotamer

3.  Quick geometry regularization to remove bad clashes

0

15

30

45

  Side chain distortions:

  Main chain distortions: rmsd~0.4 Å

correct

distorted

Å

Number of atoms

Dual-space refinement: example

  150 randomly picked from PDB structures at resolutions from 1.5 to 3Å
-  Structures severely distorted:

>  remove water
>  each side-chain switched to a different rotamer
>  geometry regularization

  RFREE after Reciprocal and Dual space refinement (sorted by RFREE Dual)

0

10

20

30

40

50

60

0 50 100 150

Dual
Reciprocal

RFREE

Structure id

Real-space refinement: to-do
  Optimize for refinement against neutron data (partial deuteration)

Fo-Fc, (H-, D-omit neutron map),
1.6 Å resolution

+2.6σ, D atoms

-2.9σ, H atoms

2Fo-Fc neutron map

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation

Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)

ADP refinement
(TLS, group, individual iso / aniso)

Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

Original refinement (PDB code: 1DQV)
R-free = 34 %
R = 29 %

PHENIX – Isotropic restrained ADP
R-free = 28 %
R = 23 %

Synaptotagmin refinement at 3.2 Å

PHENIX – TLS + Isotropic ADP
R-free = 25 %
R = 20 %

ADP refinement: example

9% improvement in both Rwork and Rfree !

TLS groups determined automatically…

TLS refinement in PHENIX: robust and efficient

  Highly optimized algorithm based on systematic re-refinement of ~350 PDB
models

  In most of cases phenix.refine produces better R-factors compared to
published

  Don’t crash or get “unstable”

0.1

0.2

0.3

0.1 0.2 0.3
0.1

0.2

0.3

0.1 0.2 0.3

Rwork (PHENIX)

Rfree (PDB)

Rfree (PHENIX)

Rwork (PDB)

phenix.refine outputs TOTAL B-factor (iso- and anisotropic):

ATOM 1 CA ALA 1 37.211 30.126 28.127 1.00 26.82 C
ANISOU 1 CA ALA 1 3397 3397 3397 2634 2634 2634 C

UTOTAL = UATOM + UTLS + UCRYST

Isotropic equivalent

UTOTAL = UATOM + UTLS + UCRYST

Stored in separate
record in PDB file
header

ADP refinement: what goes into PDB

Atom records are self-consistent:

  Straightforward visualization (color by B-factors, or anisotropic ellipsoids)

  Straightforward computation of other statistics (R-factors, etc.) – no need
to use external helper programs for any conversions.

TLS groups for refinement automatically (well, in three clicks!)

TLS

• Using TLS in refinement requires partitioning a model into TLS groups. This is
typically done by
-  visual model inspection and deciding which domains may be considered

as rigid
-  using TLSMD method

Painter & Merritt. (2006). Acta Cryst. D62, 439-450
Painter & Merritt. (2006). J. Appl. Cryst. 39, 109-111

•  Split a model into 1, 2, 3, …, N contiguous segments.

•  Compute residual for all segment partitions:

!

R = w W UATOM
i "UTLS

i()2

i=1

6
#()

atoms in segment
#

TLS

where TLS contribution of an individual atom participating in a TLS group:
UTLS = T + ALAt + AS + StAt

(20 TLS parameters per TLS group)

TLS

?
How to pick up the right number

of TLS groups?

One can try all 20 and see which
one using in refinement results in

best Rwork and Rfree

TLS

PHENIX approach to finding TLS groups

•  Goals:

-  Have it as integrated part of PHENIX system:

- No need to run external software or use web servers (=send your
data somewhere, which your policy may even not allow you to do).

- Use it interactively as part of refinement (update TLS group
assignment as model improves during refinement).

- Make it faster

- Eliminate subjective decisions (procedure should give THE UNIQUE
answer and not an array of possible choices leaving the room for
subjective decisions).

PHENIX approach to finding TLS groups
Step 1: For each chain find all secondary structure and unstructured elements

-  Number of elements defines maximum possible number of TLS groups

- A secondary structure element can’t be split into multiple TLS groups. Large
unstructured elements, can be split into smaller pieces.

Chain

S U U U S S S S

S – Secondary structure element
U – Unstructured stretch of residues (loop)

Step 2: Find all possible contiguous combinations

S S U

S S U

S S U

S S U

NELEMENTS : NPOSSIBLE PARTITIONS 3:3, 4:7, 5:15, 6:31, …, 10:511, …

3 groups

2 groups

2 groups

PHENIX approach to finding TLS groups

Step 3: For each partition fit TLS groups and compute the residual

R1

R2

R3

Step 4: Find the best fit among the groups of equal number of partitions. In this
example, if R3<R2:

Step 5: Find the best partition…

- Challenge: we can’t directly compare R1 and R3 because they are
computed using different number of TLS groups (different number of
parameters)

R1

R3

PHENIX approach to finding TLS groups

Step 5 (continued): Find the best partition…

-  Randomly generate a pool of partitions for each candidate, fit TLS matrices
compute, average residuals, and compute score:

R1

R3

R11

R12

… many (20-50)
Average residuals: R1AVERAGE

Score = (R1AVERAGE - R1)/(R1AVERAGE + R1)*100

Do the same for the next candidate:

The final solution is the one that has the highest score.

PHENIX approach to finding TLS groups: examples

GroEl structure (one chain):

No. of Targets
groups best rand.pick diff. score
 2 680.7 869.2 188.5 12.2
 3 297.1 665.7 368.6 38.3
 4 260.4 448.3 187.8 26.5
 5 206.2 342.1 135.8 24.8
 6 188.4 264.7 76.3 16.8
 7 182.3 251.2 68.9 15.9
 8 176.9 229.5 52.5 12.9
 9 173.1 207.3 34.1 9.0
 10 170.2 196.8 26.6 7.2
 11 167.8 183.1 15.2 4.3
 12 165.6 179.0 13.4 3.9
 13 163.9 170.8 6.9 2.1

PHENIX approach to finding TLS groups: examples

Synaptotagmin:
phenix.refine refinement:

-  Using TLSMD groups: RWORK = 0.1967 RFREE = 0.2546
-  Using PHENIX determined TLS groups: RWORK = 0.1970 RFREE = 0.2599

1n0y:

phenix.refine refinement:
-  Using TLSMD groups: RWORK = 0.2093 RFREE = 0.2287
-  Using PHENIX determined TLS groups: RWORK = 0.2088 RFREE = 0.2274

phenix.refine refinement:
-  Using TLSMD groups: RWORK = 0.2044 RFREE = 0.2454
-  Using PHENIX determined TLS groups: RWORK = 0.2054 RFREE = 0.2448

GroEl:

1yqo:

phenix.refine refinement:
-  Using TLSMD groups: RWORK = 0.1580 RFREE = 0.1943
-  Using PHENIX determined TLS groups: RWORK = 0.1584 RFREE = 0.1955

Automatic TLS

phenix.find_tls_groups model.pdb nproc=2

  Find optimal partition of a model into TLS groups:

Examples:

GroEL structure (3668 residues, 26957 atoms, 7 chains:
135 seconds using 1 CPU
44 seconds using 10 CPUs
Analogous job using TLSMD server: 3630 seconds (plus lots of
clicking to upload/download the files)

Lysozime structure:

9.5 seconds with one CPU
2.5 seconds using 10 CPUs

Automatic TLS
  Why it is faster:

a)  Use isotropic TLS model,
b)  Solve analytically (no minimizer used) R = w UATOM

i !UTLS
i()

2

atoms in segment
"

7 more pages …

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation

Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)

ADP refinement
(TLS, group, individual iso / aniso)

Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

Occupancy refinement

ATOM 1 N AARG A 192 -5.782 17.932 11.414 0.72 8.38 N
ATOM 2 CA AARG A 192 -6.979 17.425 10.929 0.72 10.12 C
ATOM 3 C AARG A 192 -6.762 16.088 10.271 0.72 7.90 C
ATOM 7 N BARG A 192 -11.719 17.007 9.061 0.28 9.89 N
ATOM 8 CA BARG A 192 -10.495 17.679 9.569 0.28 11.66 C
ATOM 9 C BARG A 192 -9.259 17.590 8.718 0.28 12.76 C

ATOM 549 HA3 ARG A 34 -23.064 7.146 -23.942 1.00 15.44 H
ATOM 550 H AARG A 34 -24.447 7.644 -21.715 0.15 8.34 H
ATOM 551 D BARG A 34 -24.447 7.644 -21.715 0.85 7.65 D
ATOM 552 N ARG A 35 -22.459 9.801 -22.791 1.00 8.54 N

  Automatic constraints for
occupancies of atoms in

alternate locations

  Any user defined selections
for individual and/or group

occupancy refinement can be
added on top of the automatic

selection.

ATOM 549 AU A 34 -23.064 7.146 -23.942 0.78 15.44 Au

ATOM 6 S SO4 1 1.302 1.419 1.560 0.70 13.00
ATOM 7 O1 SO4 1 1.497 1.295 0.118 0.70 11.00
ATOM 8 O2 SO4 1 1.098 0.095 2.140 0.70 10.00
ATOM 9 O3 SO4 1 2.481 2.037 2.159 0.70 14.00
ATOM 10 O4 SO4 1 0.131 2.251 1.823 0.70 12.00

Occupancy refinement – more examples

ATOM 3690 O2 AEDO C 1 23.106 -3.999 -8.239 0.58 15.69 O
ATOM 3691 C2 AEDO C 1 21.710 -4.102 -8.630 0.58 15.43 C
ATOM 3692 C1 AEDO C 1 20.965 -2.841 -8.282 0.58 16.78 C
ATOM 3693 O1 AEDO C 1 21.111 -2.587 -6.901 0.58 19.33 O
ATOM 3687 I BIOD C 1 21.798 -3.596 -7.915 0.42 34.88 I

Refinement with twinned data

  Two steps to perform twin refinement:

 - run phenix.xtriage to get twin operator (twin law):

 % phenix.xtriage data.mtz

 - run phenix.refine:
 % phenix.refine model.pdb data.mtz twin_law="-h-k,k,-l"

  Taking twinning into account makes (big) difference:

 Interleukin mutant (PDB code: 1l2h)

 R/R-free (%)
 PHENIX (no twinning): 24.9 / 27.4
 PHENIX (twin refinement): 15.3 / 19.2

Hydrogen atoms in refinement
  Some facts about hydrogen atoms:

-  H atoms are not visible in X-ray maps at “typical macromolecular”
resolutions, that is ~1Å and lower. This is because:
-  H atom is a weak scatterer (much weaker than C, N or O atoms)
-  models contain too much noise so the H contribution is hidden in it.

Ideally (nearly error free model) one would see H even at ~2Å resolution.

 - Some or most of H atoms can be seen in maps at ultra-high resolutions
(~1Å and higher):
- The resolution itself is not the sufficient condition to see H: the noise

level should be low (small R-factor).
-  Hydrogen atoms constitute nearly 50% of the total atoms in protein

structures. Typical example: Fab structure (PDB code: 1f8t): 3593 non-H
atoms, 3269 H atoms.

-  Since H is a weak scatterer, it mostly contributes to the low resolution (and
not to the high!). The reason why we see H atoms only in structures
corresponding to high resolution data is because these structures are
typically accurate enough and complete so the noise level is small (small
R-factor).

pdb

resolution Rfree(no H) – Rfree(with H)

1akg 1.1 1.9
1byp 1.75 1.41
1dkp 2.3 0.93
1rgv 2.9 0.50

  phenix.refine: handling H atoms at any resolution:

 - Riding model (low-high resolution)
 - Individual atoms (ultrahigh resolution or neutron data)
 - Account for scattering contribution or just use to improve the geometry

  Using the H atoms in refinement:
 - Improve R-factors
 - Improve model geometry (remove bad clashes)
 - Model residual density at high resolution or in neutron maps

Hydrogen atoms in refinement

  Example: automatic re-refinement of 1000 PDB models with and without H:

Review and latest developments:
Afonine, et al. (2010). Joint X-ray and neutron refinement with
phenix.refine. Acta Cryst. D66, 1153-1163.

Refinement using X-ray and Neutron diffraction data

  Different techniques – different information (neutron maps show hydrogen atoms)

2mFo-DFc maps
 X-ray (1.8 Å) Neutron (2.2 Å)

Fo-Fc, (H-, D-omit neutron
map), 1.6 Å resolution

+2.6σ, D atoms

-2.9σ, H atoms

  phenix.refine can refine a structure against neutron data or both X-ray and
neutron simultaneously

Refinement at subatomic resolution

Fo-Fc (orange) 2Fo-Fc (blue)

~340 structures in PDB at resolution higher than 1.0 Å

Aldose Reductase (0.66 Å resolution)

  phenix.refine has unique set of tools to correctly refine such structures

Modeling at subatomic resolution: IAS model

  Basics of IAS model:

 Afonine et al, Acta Cryst. D60 (2004)

  First practical examples of implementation and use in PHENIX:

 Afonine et al, Acta Cryst. D63, 1194-1197 (2007)

IAS modeling in PHENIX

)exp()(2
_ ss baf scattererbond −=j a b

a and b are pre-computed library for most bond types

Simple Gaussian is good enough:

IAS modeling: benefits
  Improve maps: reduce noise. Before (left) and after (right) adding of IAS.

  Find new features: originally wrong water (left) replaced with SO4 ion (right)
clearly suggested by improved map after adding IAS

X-ray and Neutron Crystallography: Complimentary Methods

  Still complimentary even at subatomic resolution (NAD structure)

Neutron 2mFo-DFc map at 0.65 Å resolution, ±2.4σ, green (positive), red (negative)

X-ray mFo-DFc map at 0.6 Å resolution, blue: H omit, 5σ, magenta: 2.8σ all atoms
included

Running phenix.refine (command line)

Model refinement

  Designed to be very easy to use

phenix.refine model.pdb data.hkl [parameters]

Some basic examples of running phenix.refine from the command line

  Refinement of individual coordinates, B-factors, and occupancies for some
atoms:

phenix.refine model.pdb data.hkl

  Add water picking and Simulated Annealing to default run above:

phenix.refine model.pdb data.hkl simulated_annealing=true
ordered_solvent=true

  Refinement of individual coordinates and B-factors using neutron data:

phenix.refine model.pdb data.hkl
main.scattering_dictionary=neutron

  To see all parameters (a few hundreds):

phenix.refine --show_defaults=all

Running phenix.refine

% phenix.refine model.pdb data.hkl parameter_file

where parameter_file contains following lines:

refinement.main {
 high_resolution = 2.0
 low_resolution = 15.0
 simulated_annealing = True
 ordered_solvent = True
 number_of_macro_cycles = 5
}
refinement.refine.adp {
 tls = chain A
 tls = chain B
}

For typing enthusiasts, the equivalent command line run would be:

% phenix.refine model.pdb data.hkl xray_data.high_resolution=2
xray_data.low_resolution=15 simmulated_annealing=true
ordered_solvent=True adp.tls=“chain A” adp.tls=“chain B”
main.number_of_macro_cycles=5

Typical way of phenix.refine run from the command line

1.  Get the file with all parameters:
% phenix.refine --show-defaults=all > parameter_file

2.  Edit the file parameter_file:
-  Remove all parameters that you are not planning to change (make sure to have

all { } matched)
-  Change the rest of parameters

3.  Run phenix.refine as following:

% phenix.refine model.pdb data.hkl parameter_file

or (If model.pdb and data.hkl are included into parameter_file file)

% phenix.refine parameter_file

Useful tip: to compare the set of parameters in your parameter_file file against the

set of all default parameters, type:

% phenix.refine --diff-params parameter_file

  When running: % phenix.refine model.pdb data.hkl

each item in model.pdb is matched against the CCP4 Monomer Library to
extract the topology and parameters and to automatically build corresponding
restraints.

  If model.pdb contains an item not available in CCP4 Monomer Library, e.g.
a novel ligand, use ReadySet! program to generate topology and parameter
definitions for refinement:

% phenix.ready_set model.pdb

This will produce the file LIG.cif and updated PDB file model.updated.pdb
with all H atoms added which can be used for refinement:

% phenix.refine model.pdb data.hkl LIG.cif

Some refinement runs require two steps: hydrogens and ligands

Some refinement runs require two steps: twinning

  Two steps to perform twin refinement:

 - run phenix.xtriage to get twin operator (twin law):
% phenix.xtriage data.mtz

 - run phenix.refine:
% phenix.refine model.pdb data.mtz twin_law="-h-k,k,-l"

Model refinement - output

  Input command

phenix.refine model.pdb data.mtz [parameters]

  Output files

model_refine_001.eff summary of all input parameters

model_refine_001.geo summary of all restraints used

model_refine_001.log complete information about refinement

model_refine_001.pdb refined structure

model_refine_001.mtz Fourier map coefficients, Fcalc, etc.

model_refine_002.def parameters for the next run

If data file is not in MTZ format, or there are multiple data files at input
(example: one with Fobs and the other one with free-R flags), then
phenix.refine will combine them into one MTZ data file called:
model_data.mtz and this file should be used in all subsequent runs.

MTZ phenix.refine

A run

phenix.refine model.pdb data.mtz

does not output anymore

model_001_map_coeffs.mtz

Instead, it always outputs a MTZ file

model_001.mtz

that contains:

MTZ phenix.refine
 Number of datasets: 4
 Dataset 1:

 Name: Original-experimental-data
(...)
 label #valid %valid min max type
 H 17129 100.00% 0.00 18.00 H: index h,k,l
 K 17129 100.00% 0.00 35.00 H: index h,k,l
 L 17129 100.00% 0.00 45.00 H: index h,k,l
 I-obs 16775 97.93% 0.00 1250.45 K: I
 SIGI-obs 16775 97.93% 0.00 46.36 M: standard deviation
 Dataset 2:

 Name: Experimental-data-used-in-refinement
(...)
 label #valid %valid min max type
 F-obs-filtered 16464 96.12% 1.15 35.36 G: F
 SIGF-obs-filtered 16464 96.12% 0.05 2.96 L: standard deviation
 Dataset 3:

 Name: Model-structure-factors-(bulk-solvent-and-all-scales-included)
(...)
 label #valid %valid min max type
 F-model(+) 16464 96.12% 0.00 83.91 G: F(+) or F(-)
 PHIF-model(+) 16464 96.12% -180.00 180.00 P: phase angle in degrees
 F-model(-) 14382 83.96% 0.02 91.93 G: F(+) or F(-)
 PHIF-model(-) 14382 83.96% -179.97 179.95 P: phase angle in degrees
 Dataset 4:

 Name: Fourier-map-coefficients
(...)
 label #valid %valid min max type
 2FOFCWT 17129 100.00% 0.00 43.21 F: amplitude
 PH2FOFCWT 17129 100.00% -180.00 180.00 P: phase angle in degrees
 2FOFCWT_no_fill 16657 97.24% 0.00 41.96 F: amplitude
 PH2FOFCWT_no_fill 16657 97.24% -180.00 180.00 P: phase angle in degrees
 FOFCWT 16657 97.24% 0.00 58.25 F: amplitude
 PHFOFCWT 16657 97.24% -180.00 180.00 P: phase angle in degrees
 ANOM 14189 82.84% 0.00 2.19 F: amplitude
 PANOM 14189 82.84% -180.00 179.96 P: phase angle in degrees

Example of a complex refinement run
  Do the following:
-  refine individual coordinates for all atoms using minimization and

Simulated Annealing
-  refine coordinates of three rigid body groups:

o  chain A
o  chain B and chain C
o  chain D

-  individual anisotropic ADP for all Uranium atoms
-  individual isotropic ADP for all other atoms
-  three TLS groups:

o  atoms in residues from 1 to 300 of chain A and whole chain B
o  atoms from 301 to 500 in chain A
o  whole chain D

-  update water during refinement
-  use NCS in refinement
-  output everything into a files with prefix test

% phenix.refine model.pdb data.hkl parameters.eff

where parameters.eff contains following lines: see next slide…

Example of a complex parameter file
refinement {
 output {
 prefix = test
 }
 refine {
 strategy=*individual_sites individual_sites_real_space *rigid_body \
 *individual_adp group_adp *tls *occupancies group_anomalous
 sites {
 rigid_body = chain A
 rigid_body = chain B or chain C
 rigid_body = chain D
 }
 adp {
 individual {
 isotropic = not (element U)
 anisotropic = element U
 }
 tls = chain A and resseq 1:300 or chain B
 tls = chain A and resseq 301:500
 tls = chain D
 }}
 main {
 simulated_annealing = True
 ordered_solvent = True
 ncs = True
}}

Reporting bugs, problems, asking questions

  Something didn’t work as expected?... program crashed?... missing
feature?...

Not Good: silently give up and run away looking for alternative software
(or write your own program).

Good: report us a problem, ask a question, request a feature (explain why
it’s good to have), ask for help.

  Reporting a bug:
Not good: “Hi! PHENIX crashed, I don’t know what to do.”

Good: “Hi! PHENIX crashed. Here are:
 1) PHENIX version;
 2) Command and parameters I used;
 3) Input and output files (at least logs).”

Subscribe to PHENIX bulletin board: www.phenix-online.org

www.phenix-online.org

This
presentation
(PDF file) and

much more

