
The PHENIX graphical
interface

Nathaniel Echols
NEchols@lbl.gov

help@phenix-online.org
http://www.phenix-online.org

mailto:NEchols@lbl.gov
mailto:NEchols@lbl.gov
http://www.phenix-online.org
http://www.phenix-online.org

Randy Read, Airlie McCoy,
Gabor Bunkoczi, Rob Oeffner

Tom Terwilliger, Li-Wei Hung

The PHENIX Project

An NIH/NIGMS funded
Program Project

Paul Adams, Pavel Afonine, Nat
Echols, Richard Gildea, Ralf Grosse-
Kunstleve, Jeff Headd, Nigel Moriarty,

Nicholas Sauter, Peter Zwart

Lawrence Berkeley Laboratory

Los Alamos National Laboratory

Jane & David Richardson,
Vincent Chen, Swati Jain, Gary
Kapral, Chris Williams, Bryan

Arendall, Bradley Hintze

Cambridge University

Duke University

Automation of Structure Solution

Data quality

Experimental

Phasing

Molecular

Replacement

Phase improvement

Model building

Structure completion

Refinement

Validation

Deposition

Ligand identification &

Fitting

phenix.autobuild

phenix.refine

phenix.ligandfit

phenix.elbow ligand screen

phenix.autosol

phenix.automr

phenix.xtriage

molprobity

Labelit

Acta Cryst. 2010, D66:213-221.

Automation of Structure Solution

Data quality

Experimental

Phasing

Molecular

Replacement

Phase improvement

Model building

Structure completion

Refinement

Validation

Deposition

Ligand identification &

Fitting

http://www.iucr.org/cgi-bin/paper?ba5027
http://www.iucr.org/cgi-bin/paper?ba5027

Why Automation?

• Can speed up the process and can help reduce errors

• Software can try more possibilities than we are typically willing to
bother with

• Makes difficult cases more feasible for experts

• Routine structure solution cases are accessible to a wider group of
(structural) biologists

• Multiple trials or use of different parameters can be used to estimate
uncertainties

• What is required:

• Software carrying out individual steps

• Integration between the steps (collaboration between developers)

• Algorithms to decide which is best from a list of possible results

• The computer has to make the decisions

• Strategies for structure determination and decision-making

PHENIX resources online

• help@phenix-online.org: user support

• bugs@phenix-online.org: bug reports

• phenixbb@phenix-online.org: message board
(subscribers only)

• Regular stable releases,
and “nightly” builds

• Supported on:

• Linux (RedHat, Fedora)

• Mac OSX

• Windows (in progress)

• Extensive documentation

mailto:help@phenix-online.org
mailto:help@phenix-online.org
mailto:bugs@phenix-online.org
mailto:bugs@phenix-online.org
mailto:phenixbb@phenix-online.org
mailto:phenixbb@phenix-online.org

Obtaining PHENIX

• Free to academic users; simple online registration
required (please use your academic email address!)

• Regular official releases (typically 2-8 months)

• Nightly builds

http://www.phenix-online.org/download/nightly_builds.cgi

• Regular releases

• Supported on:

• Linux (RedHat, Fedora)

• Mac OSX

• Extensive
documentation

http://www.phenix-online.org/download/nightly_builds.cgi
http://www.phenix-online.org/download/nightly_builds.cgi

Command line tools

• Very simple and intuitive syntax

• Data validation
phenix.xtriage porin_fp.mtz

• Automated structure solution
phenix.autosol data=peak.sca seq_file=nsf-d2.seq

• Automated model building
phenix.autobuild data=scale.mtz model=mr.pdb
seq_file=correct.seq

• Automated ligand fitting
phenix.ligandfit data=nsf-d2.mtz model=noligand.pdb
ligand=atp.pdb

• Structure refinement
phenix.refine nsf-d2.mtz nsf.pdb

• Building ligand coordinates and restraints
phenix.elbow --smiles=“C12CC3CC(C2)CC(C1)C3”

Why a GUI?

• Condense and summarize output

• Human beings make poor text parsers

• Many results are inherently graphical - better to plot data
than show a table

• Higher-level automation:

• Simplify transitions between programs, and automatically
pick relevant files

• Suggest appropriate next steps (or run them immediately)

• Track and organize results for a project

PHENIX GUI: Major features and design goals

• Automatic interface generation based on underlying configuration files

• All features available in command line versions should be present in the GUI as well

• Integration with Coot and PyMOL for nearly all programs

• Validation GUI directly controls graphics windows

• Graphical presentation of current progress (where appropriate) and results

• Drag-and-drop of files (from desktop or between windows) supported in most interfaces

• Visual atom selections (mainly for phenix.refine)

• Customization of program behavior and project details

• Simple transitions between programs: start AutoBuild directly from AutoSol, etc.

• Run processes either directly in GUI or independently (“detached”)

• Track and display appropriate citations for programs used

• Automatic bug reports for Python errors - sent directly to me

Central interface

• Project management and application list

Many user-adjustable
settings in here

Project-specific
settings (including

default files)

Simple utilities
(including download

from PDB)

Project management

Things to avoid:
• Making your home
directory a project directory
• Nesting project directories
• Moving project directories -
use “Move project” in the
Projects menu for this

• Projects are mainly used to track
related jobs and store results

• Some project-specific settings
available (X-ray data, hydrogen
addition)

• Creating a project in a directory
will add a subdirectory “.phenix”
to store internal data

• Tutorial setup with sample data
now integrated with project
management

Project history

Display can be limited to specific programs with this menu

This icon
indicates an
aborted job

This icon
indicates that
the job failed

(for any
reason)

“Flagging” a job marks
it as important

This button opens a
summary panel (next slide)

Project history: job summaries

• Overview of input and output files, and statistics

Project directory layout

• Inside each project directory:

• You should not need to modify any of these files

.phenix/
project.phil
job_history.phil
tmp/
defaults/
project_data/
 job_[X].phil
 refine_1.eff
 refine_1.log
 refine_1.pkl

basic project info
job history (without details)
folder for temporary files

various default files (if defined)
data for individual jobs

job runtime files (including
log and saved result)

record of input/output files and statistics

New feature (January 2012): project groups

• An additional sorting layer, primarily for managing common
files and settings - mostly* optional

* Tutorials are automatically added to a “PHENIX tutorials”
group - any other project will not be part of a group unless
explicitly specified

User preferences

• Settings for overall behavior and individual programs

Overview of available programs

• Central interface (“phenix” command)

• AutoSol, AutoMR, AutoBuild, and LigandFit wizards

• phenix.refine (and associated utilites)

• Xtriage - comprehensive assessment of data quality

• Phaser - advanced interface for MR and SAD

• Validation - most of Molprobity, and more

• Several map-related interfaces

• Reflection file editor - combine files, create or extend R-free flags

• REEL - graphical restraints editor (Nigel Moriarty)

• 40+ programs currently available, more coming soon

Overview of available programs

Overview of available programs

Overview of available programs

“Expert level” control in dialog windows

Configuration interfaces can
be dynamically adjusted to
show only the most basic/
popular options, or more
detail:

Changing the “user level” shows or
hides advanced controls; the default
level can be set in the Preferences

Keyword search for parameters
Most documentation covers the command-line parameters; the
corresponding GUI controls may be easiest to find with the search

It helps to be as specific as possible:
searching for “mask” alone finds 19
parameters, “optimize mask” (shown) finds
5, and “optimize_mask” (a specific
parameter name) finds 2.

Coot/PyMOL integration

• Coot must have Python support (default on Mac)

• Specific paths to executables usually required on Linux

• Preferences->Graphics->Full path to Coot [...PyMOL]

• Most results can be opened directly in graphics apps

• Any PDB file listed in GUI can also be opened

• AutoSol, AutoBuild, and phenix.refine will update Coot
continuously while running

File management

• Bulk file input possible on both Mac + Linux

Automatic bug reports

• Sent via email to Phenix developers - please submit!

Utility functions (“Other tools” in main GUI)

• Convenient access to very small and fast programs

Reflection file editor
Combine and manipulate reflection
files in any format, output as MTZ.
Capable of extending old R-free sets,
and generating new sets as thin shells
(for refinement in presence of NCS).
For use with fully processed data only -
reflections will be merged and h,k,l
indices altered as required.

(All functionality is also available on the command line as iotbx.reflection_file_editor, but we recommend using the GUI for
this unless you are scripting an automation pipeline.)

drag data arrays to output list

advanced output settings

phenix.data_viewer: visualizing reflections in 3D

Anomalous data in P21212, showing missing reflections (white) and systematic absences (violet)

Useful for identifying pathologies and other dataset properties

Data analysis with phenix.xtriage

• Analysis of signal-to-noise, data quality, Wilson plot,
translational NCS, twinning, symmetry issues, and more

Wilson plot and B-factors for a typical protein crystal
dataset ($PHENIX/examples/porin-twin)

Anomalous signal vs. resolution for an excellent SeMet
dataset ($PHENIX/examples/p9-sad)

AutoSol and AutoBuild run Xtriage almost immediately, and
results can be viewed from those GUIs. However, it may
save time and effort to run Xtriage yourself first.

Identifying twinned structures in Xtriage

Good data (p9-sad
example): observed
intensity distributions
are close to expected
values

Twinned data (porin-
twin example): NZ test
curve is sigmoidal, L
test curve is shifted
upwards

Twinning can’t be detected by looking at diffraction images, but it
changes the distribution of intensity values in predictable ways

Intensity distributions can also be affected by pseudotranslation (especially NZ test); make sure you look
at all of the evidence for twinning!

Identifying twinned structures in Xtriage
The twin fraction for all possible twin laws will be estimated;

usually one of these is obviously different
Two twin laws from
the porin-twin
example are shown; in
this case h,-h-k,-l is the
actual twin law for this
crystal. This can be
used in phenix.refine,
which will determine
the true twin fraction
based on the refined
model.

The validation GUI (or
phenix.model_vs_data)
will also try to determine
if your structure is
twinned based on the R-
factors with and without
a twin law.

AutoSol: an experimental phasing pipeline

Tom Terwilliger, Ralf Grosse-
Kunstleve, Airlie McCoy, Randy
Read, Pavel Afonine

Anomalous and/or isomorphous data

Correct for anisotropy (if needed)

Locate substructure with phenix.hyss

Scale data

Score substructure hands (analysis of maps)

Phasing (Phaser or Solve)

Statistical density modification (Resolve)

Initial model building (Resolve)

Substructure
Completion

Terwilliger et al: Decision-making in structure solution using Bayesian estimates of
map quality: the PHENIX AutoSol wizard. Acta Cryst. 2009, D65:582-601.

The AutoSol graphical interface
Files added by dragging from
desktop into the window

Very little input required for simple
SAD experiments, but multiple
datasets and methods are also
supported

All phasing results (sites and maps)
linked to building programs and
external graphics windows

How Competitive is Automated Solution?

Tom Terwilliger, Paul Adams

Manual
AutoSol

AutoMR: Phaser made easy

• Streamlined setup of ensembles and composition

Single-click transitions to building,
refinement, MR-SAD GUIs Phaser: Airlie McCoy, Gabor Bunkoczi, Rob Oeffner, Randy

Read; AutoMR: Tom Terwilliger

• Includes all features of command-line program

Phaser-MR for advanced users and difficult cases

Any reflection file
format permitted

Supports all MR
modes (automatic

or manual)Most keywords
found here

One-click re-use of
partial solutions
from past runs Phaser: Airlie McCoy, Gabor Bunkoczi,

Rob Oeffner, Randy Read

Can use a low-
resolution map as
a search model

phenix.maps GUI
Very simple interface for creating simple maps (including
anomalous difference maps) in MTZ or XPLOR format*

* To save disk space, Phenix does not write XPLOR or CCP4 maps by
default; however, most programs in the GUI will convert MTZ map
coefficients to CCP4 format when you click the “Open in PyMOL”

button.

“kicked” map: removes bias by averaging maps
calculated with shaken coordinates (Praaenikar
et al. 2009 Acta Cryst. D65:921)

Fill missing F(obs) with F(calc): often improves
2mFo-DFc maps, but watch out for bias!
(phenix.refine and Refmac both do this)

• Combines with phenix.ready_set for adding hydrogen/deuterium and
generating restraints - not fully automatic yet

phenix.refine: graphical extensions

phenix.refine: Pavel Afonine et al.; phenix.ready_set: Nigel Moriarty

Automatic re-use of parameters
in subsequent refinement jobs

phenix.refine: graphical extensions

• phenix.find_tls_groups: highly parallel automatic TLS setup (similar to
TLSMD), available as interactive component

phenix.find_tls_groups: Pavel Afonine

Buttons to launch find_tls_groups or TLSMD web server

Visualization of
atom selections

Integrating refinement and validation

• Constant feedback during refinement enables immediate detection of
potential problems

R-factors and
geometry

deviations by cycle

Molprobity
validation

scores

Coot model
and maps
updated at
each step

• Outlier lists recenter Coot view; Probe dots automatically loaded

Visualizing validation problems

outliers in graphs also
recenter Coot

Advanced validation tools

• Combines Molprobity with phenix.model_vs_data; run
automatically after phenix.refine

MolProbity/KiNG: Richardson Lab, Duke

POLYGON

• Graphical comparison of statistics versus the PDB

POLYGON: Ludmilla Urzhumtseva, Pavel Afonine, Sacha Urzhumtsev;
Urzhumtseva et al. (2009) Acta Cryst. D65:297-300.

The structure used to generate
this figure has good geometry
relative to the PDB, but very
poor R-factors.

Colored bars are one-
dimensional histograms
showing distribution of
values for structures at
similar resolution

The black polygon shows
where the statistics for the
user’s structure fall in each
histogram

Parallel validation of multiple structures

• Identifies points of difference between structures of
the same protein, with optional map superpositioning

(Collaboration with Herb Klei, BMS)

Comparison of
sidechain rotamers
across all chains
(green = most
common, yellow =
minority, red =
outlier)

Double-clicking any
cell in the grid

zooms Coot/PyMOL

Works in progress and future plans

• Improved Windows support

• Fully automated molecular replacement

• Simplified GUI for eLBOW (ligand restraints)

• LABELIT GUI (indexing of diffraction images)

• You can preview new developments by checking
“Enable alpha-test programs and features” in the
preferences

• Suggestions? Email NEchols@lbl.gov

mailto:NEchols@lbl.gov
mailto:NEchols@lbl.gov

Acknowledgments
• Lawrence Berkeley Laboratory

• Paul Adams, Pavel Afonine, Richard Gildea, Ralf
Grosse-Kunstleve, Jeff Headd, Nigel Moriarty,
Nicholas Sauter, Peter Zwart

• Los Alamos National Laboratory

• Tom Terwilliger, Li-Wei Hung

• Funding:

• NIH/NIGMS: P01GM063210, P50GM062412,
P01GM064692, R01GM071939

• PHENIX Industrial Consortium

• Lawrence Berkeley Laboratory

• Cambridge University

• Randy Read, Airlie McCoy, Laurent Storoni,
Gabor Bunkoczi, Robert Oeffner

• Duke University

• Jane Richardson & David Richardson, Ian Davis,
Vincent Chen, Chris Williams, Bryan Arendall,
Laura Murray, Gary Kapral, Swati Jain, Bradley
Hintze

• Others

• Alexandre Urzhumtsev

• Luc Bourhis

• Herb Klei

• Garib Murshudov & Alexi Vagin

• Paul Emsley, Kevin Cowtan, Bernhard Lohkamp,
William Scott, Charles Ballard

• Warren DeLano

• David Abrahams

• PHENIX Testers & Users: Brent Appleton, Joel Bard,
Scott Classen, Ben Eisenbraun, James Fraser, Felix
Frolow, Christine Gee, Miguel Ortiz-Lombardia, Blaine
Mooers, Bob Nolte, Engin Ozkan, Daniil Prigozhin,
Miles Pufall, Richard Rymer, Edward Snell, Eugene
Valkov, Erik Vogan, Frank von Delft, Andre White, and
many more

•Authors of open-source software packages:

wxPython, matplotlib, numpy, ksDSSP, MUSCLE, PULCHRA

