

CBMS workbench (virtual), Oct 13 2021

Tools for crystallography

Dorothee Liebschner Lawrence Berkeley Laboratory

Steps in crystallography

Data Quality Assessment

Macromolecular crystals are prone to pathologies:

- Twinning: two or more crystals are intergrown (orientations are related by twin operation)
- tNCS: more than one copy of a molecule is in a similar orientation in the asymmetric unit

Data anomalies can prevent structure solution!

→ It is important to check your data before phasing, model building and refinement.

Xtriage does diagnostics for major pathologies and data properties (Wilson plot, completeness, symmetry).

Please inspect all individual results closely, as it is difficult to automatically detect all issues.

Steps in crystallography

Goal of crystallographic experiment

Typically, the goal is to determine the **structure**. (arrangement of atoms in space)

The electron density in the unit cell is related to the Fourier transform of the **amplitude and phase of the scattered X-rays**.

$$\rho(\vec{r}) = FT\left(\vec{F}(\vec{H})\right) = \frac{1}{V} \int \vec{F} \cdot e^{-2i\pi \vec{H} \cdot \vec{r}}$$

Goal of crystallographic experiment

If we know the density...

Goal of crystallographic experiment

If we know the density...

... then we can determine the structure

 ϕ is lost: phase problem

Unfortunately: $\rho(\vec{r}) = FT\left(\vec{F}(\vec{H})\right) = \frac{1}{V} \int |F| e^{i\phi} \cdot e^{-2i\pi \vec{H} \cdot \vec{r}}$

obtained from the experiment: $I \propto |F|$

 \rightarrow We need to recover the phases.

How to recover phases

Experimentally

Exploit the properties of a few special atoms:

- anomalous scattering
- a large number of electrons

Computationally

• Molecular Replacement (MR)

A previously known structure can provide initial phase estimates for a new structure

Direct Methods
 Phase relationships can be formulated by assuming the positivity and atomicity of the electron density

Experimental phasing methods

Method		Phasing information
SIR	Single isomorphous replacement	A few electron-rich atoms
MIR	Multiple isomorphous replacement	Several derivatives
SAD	Singe-wavelength anomalous diffraction	A few anomalous scatterers
native SAD	SAD based on native sulfurs	Special case of SAD
MAD	Multiple-wavelength anomalous diffraction	A few anomalous scatterers; Collect at several wavelengths
SIRAS	Single isomorphous replacement with anomalous scattering	SAD and SIR
MIRAS	Multiple isomorphous replacement with anomalous scattering	MAD and MIR
RIP	Radiation damage induced phasing	Special case of SIR

Experimental phasing methods: count

Retrieved Oct 2021

Experimental Phasing with AutoSol

Experimental Phasing with AutoSol

This procedure is fully automatic!

Use a previously known structure to get phase estimates

Steps in crystallography

Automated Model Building

Goal:

Build a model into an (interpretable) density map

"by hand": tedious, time-consuming, prone to errors.

→ Task can be automated: AutoBuild

Multi-step procedure:

• Locate helices and strands

Multi-step procedure:

- Locate helices and strands
- Extend helices and strands iteratively with tripeptides from libraries

Multi-step procedure:

- Locate helices and strands
- Extend helices and strands iteratively with tripeptides from libraries
- Assemble fragments into a poly-ala chain

Multi-step procedure:

- Locate helices and strands
- Extend helices and strands iteratively with tripeptides from libraries
- Assemble fragments into a poly-ala chain
- Build side chains and align them to the protein sequence

Steps in crystallography

Refinement

Refinement = Use an *optimization* algorithm to minimize a *target function* by changing the *parameters* of the model

Refinement: Model parameters

Parameters that describe the crystal and its content.

- Atomic model:
 - coordinates
 - B-factors
 - occupancies
- Non-atomic model
 - bulk-solvent
 - anisotropy
 - twinning

$$\mathbf{F} = k\{\mathbf{F}_{calc} \exp[-\Delta B(\sin\theta/\lambda)^2] + d_{solv}\mathbf{F}_{solv} \exp[-B_{solv}(\sin\theta/\lambda)^2]\}$$

 $\mathbf{F}_{\text{CALC (ATOMS)}}(h,k,l) = \sum_{n=1}^{Natoms} q_n f_n(s) \exp\left(-\frac{B_n s^2}{4}\right) \exp\left(2i\pi \mathbf{r}_n \mathbf{s}\right)$

Objective function

- assesses the fit to experimental data
- relates model parameters and data
- Least-squares (LS), Maximum-Likelihood (ML), R-factor, ...
- Based on structure factors (reciprocal-space refinement)
- Based on electron density (real-space refinement)

$$T = T_{\text{DATA}}(F_{\text{OBS}}, F_{\text{MODEL}})$$

Refinement: Target function

Restraints: a priori knowledge

Chemistry

Restraints: ADP

Isotropic ADPs

Used automatically (no need to activate)

Restraints: ADP

Anisotropic ADPs

Pictures from Thomas Schneider

Restraints: secondary structure

Example: refine a perfect α -helix into low-res map

- standard restraints on covalent geometry are insufficient
- Model geometry deteriorates

Restraints: secondary structure

Restrain the geometry of H-bonds and stacking pairs:

Restraints: Ligands

Restraints of common ligands are included in libraries.

If novel ligand:

- eLBOW
 ligand builder
- ReadySet!

Wrapper for eLBOW with additional features (add H atoms)

• REEL

GUI for editing restraints

Refinement: optimization algorithm

Minimization: Follow the local gradient

Simulated annealing: Simulates heating up a system and slowly cooling it down, as a way of escaping local energy minima trapping

Other features

Other features

- Automatically detect and correct flipped N/Q/H residues
- Uses Molprobity and Reduce methodology

Other features

Automatic water update

Add/remove/refine automatically as part of refinement cycle

→ No need to do it as a separate step using external tools

Remove "bad" water:

- 2mFo-DFc (peak height)
- distances
- map correlation
- B-factors and anisotropy
- occupancy

Add new:

- difference map
- distances

Needs to be activated!

Validation

Should be done after **each** refinement run.

Why?

- Minimization did not converge to global minimum
- Software is not perfect (bugs)
- Double-check parameterization
- Look at problematic areas

Phenix.refine GUI makes the task easy: integration with COOT (see demo of phenix.refine)

Steps in crystallography

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877