

Virtual RapiData, March 24, 2023

## Planning and carrying out automated structure determination using SAD phasing

#### Single wavelength Anomalous Diffraction

**Dorothee Liebschner**, Lawrence Berkeley National Laboratory Tom Terwilliger, Los Alamos National Laboratory







#### Phasing methods in the PDB



Note: Not all models in the PDB have (correct) info

#### Phasing methods in the PDB



#### Molecular replacement



- Less experimental phasing
- More and more MR structures
- Trend will continue with predicted models (AlphaFold etc.)

## Some limitations of predicted models

- Predicted models are great to jumpstart structure determination
- Limitations:

Only protein

Little information about residues that are far apart



Trained on good and poor structures



No water, ions, covalent modifications, carbohydrates, ligands, DNA, RNA

Models may have distortions and incorrect domain relationships

Parameters may systematically include poor geometry

 $\rightarrow$  We still need experimental phasing.

#### Solving a structure with SAD phasing (Se)



## Solving a structure with SAD phasing (Se)



#### Will I solve my SAD structure?



#### Will I find the anomalous substructure?



#### **Key steps for SAD phasing**





2. Calculate an interpretable map

Anomalous correlation CC<sub>ano</sub>

#### **Anomalous signal**



- Peak height in anomalous difference Fourier
- "Information per site"
- Substructure likely to be found if S > 10

#### **Anomalous correlation**



# 2. Calculate an interpretable map Anomalous correlation CC<sub>ano</sub>

- Correlation of anomalous differences with ideal
- Accuracy of anomalous data
- Accuracy of phasing

Anomalous signal S

← Peak height in anomalous difference Fourier

Will I find sites?

We can only calculate this once we solved the structure.

 $\rightarrow$  Estimate it

#### Anomalous signal: key to finding substructure



Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Terwilliger TC, Bunkóczi G, Hung L-W, Zwart PH, Smith JL, Akey DL, Adams PD <u>Acta Cryst. D72, 346-358 (2016).</u>

Relationship between the anomalous signal and the solution of the anomalous substructure

"What value of S (anomalous signal) do I need to solve the substructure?"

Relationship between the anomalous signal and the solution of the anomalous substructure



#### Anomalous signal: key to finding substructure

Relationship between the anomalous signal and the solution of the anomalous substructure



#### **Estimating the anomalous signal**

I/sigma (accuracy of data)



Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Terwilliger TC, Bunkóczi G, Hung L-W, Zwart PH, Smith JL, Akey D, Adams PD Acta Cryst. D72, 359-374 (2016).

#### **Estimating the anomalous signal**



#### Estimating the anomalous signal



#### **Summary**

- We can estimate the anomalous signal S from the data
- If S > 10  $\rightarrow$  substructure is likely to be found
- We can simulate the anomalous signal (before doing the experiment)

#### Will I solve my SAD structure?



#### Why automate structure determination?

Makes straightforward cases easier

... and difficult cases feasible for experts

Speeds up the process

Reduces errors

Allows you to try more possibilities



#### **Decision-making in automation**

# What does a good electron density map look like?



Using expected features of maps to make decisions

#### **Decision-making in automation**

#### Which map is better?





#### Histograms of density have positive skew

Skew = measure of the asymmetry



Typical histogram of electron density

#### Histograms of density have positive skew



#### Histograms of density have positive skew

How well does the skew reflect map quality?

- 247 MAD, SAD, MIR datasets with final model available
- $\blacktriangleright$  Run *phenix.autosol* on each dataset  $\rightarrow$  maps
- Score the maps based on skew
- Compare the scores with the actual quality of the maps (correlation to model map)

#### Positive skew in good maps



#### Estimate map quality from skew



#### Summary

- The skew reflects map quality
- We can estimate map quality from the skew
- Use the skew for decision making (automation)

#### Will I solve my SAD structure?



#### Map improvement by density modification

# What does a good electron density map look like?



Using expected features of maps to improve maps

#### **Density modification = "phase improvement"**



#### **Basis of density modification**





Clear map

Improve the noisy map to create the clear map using two key facts:

1. We know a good map when we see it

2. Improvement anywhere means improvement everywhere

#### **Density modification: strategy**



Noisy map

Density everywhere is improved

#### One atom and a flat solvent region

1-dimensional example to illustrate the details of statistical density modification



#### A Fourier sum of sines and cosines



#### A Fourier sum of sines and cosines



Find out the phase of one Fourier term using:

1) All other Fourier terms

2) Flat solvent

#### A Fourier sum of sines and cosines



#### Using flat solvent to identify phase of one term



## **Density modification of real maps**



Expectation about the flatness of the solvent

- $\rightarrow$  Identify the phase of one Fourier term
- $\rightarrow$  Improve the map in the protein region
- = Transfer information from one part of the map to another.

#### **Density modification of real maps**



#### **Summary**



Improved phases

$$p(\varphi) = p_{exp}(\varphi) p_{map}(\varphi)$$

We know a good map when we see it

Improvement anywhere means improvement everywhere

Density modification transfers information from one part of the map to another

#### Summary

- You can simulate your SAD experiment → you can plan your experiment.
- Use prior expectations about density maps to automate the analysis.
- When you improve the map *anywhere*, the map will get better *everywhere*.

#### References



Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L.-W., Read, R. J. & Adams, P. D. (2008). *Acta Cryst. D.* **64**, 61–69.

Terwilliger, T. C., Adams, P. D., Read, R. J., McCoy, A. J., Moriarty, N. W., Grosse-Kunstleve, R. W., Afonine, P. V., Zwart, P. H. & Hung, L.-W. (2009). *Acta Cryst.* D65, 582–601.

Terwilliger, T. C., Bunkóczi, G., Hung, L.-W., Zwart, P. H., Smith, J. L., Akey, D. L. & Adams, P. D. (2016). *Acta Cryst.* D72, 346–358.

Terwilliger, T. C., Bunkóczi, G., Hung, L.-W., Zwart, P. H., Smith, J. L., Akey, D. L. & Adams, P. D. (2016). *Acta Cryst.* D72, 359–374.



#### The Phenix Project





Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877

#### **Automated model-building**

# Planning the experiment Automating the analysis ..... v IN 80 THS Improving the map **Building a model**

#### Multi-step procedure:

- Locate helices and strands
- Extend helices and strands iteratively with tripeptides from libraries
- Assemble fragments into a poly-ala chain
- Build side chains and align them to the protein sequence

#### Finding regular protein structure



#### **Extending with short fragments from PDB**



#### **Assembling best model**



## Identifying residue type at each position

| # | G  | Α  | S  | V  | I  | L | Μ | С | F  | Y  | К | R | w  | Н | Е | D  | Q | Ν | Р  | т |
|---|----|----|----|----|----|---|---|---|----|----|---|---|----|---|---|----|---|---|----|---|
| 1 | 6  | 5  | 4  | 18 | 18 | 6 | 1 | 1 | 1  | 2  | 6 | 2 | 2  | 1 | 9 | 6  | 1 | 0 | 1  | 4 |
| 2 | 4  | 11 | 14 | 37 | 5  | 2 | 0 | 2 | 0  | 0  | 2 | 3 | 0  | 0 | 1 | 2  | 0 | 0 | 0  | 6 |
| 3 | 11 | 23 | 5  | 12 | 5  | 3 | 2 | 0 | 1  | 3  | 7 | 3 | 1  | 0 | 5 | 3  | 2 | 0 | 2  | 2 |
| 4 | 7  | 9  | 6  | 16 | 8  | 5 | 2 | 0 | 1  | 3  | 8 | 4 | 1  | 0 | 7 | 6  | 2 | 0 | 3  | 4 |
| 5 | 31 | 7  | 3  | 7  | 4  | 2 | 1 | 0 | 1  | 3  | 5 | 4 | 1  | 0 | 6 | 2  | 2 | 0 | 11 | 1 |
| 6 | 1  | 3  | 3  | 41 | 14 | 8 | 0 | 0 | 0  | 0  | 2 | 1 | 0  | 0 | 2 | 4  | 0 | 0 | 1  | 9 |
| 7 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 15 | 63 | 1 | 0 | 17 | 1 | 0 | 0  | 0 | 0 | 0  | 0 |
| 8 | 2  | 3  | 6  | 23 | 10 | 6 | 2 | 1 | 0  | 1  | 4 | 3 | 0  | 0 | 5 | 16 | 1 | 0 | 1  | 6 |
| 9 | 96 | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0  | 0  | 0 | 0 | 0  | 0 | 0 | 0  | 0 | 0 | 0  | 0 |

#### Inserting side chains based on sequence



#### **Automated structure determination**

