

Bioscience Division

A brief introduction to X-ray crystallography

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

1.5 mm

Los Alamos Bioscience Division

Mounting crystals in nylon loops and cryo-cooling them

Liquid nitrogen

Loop holder

Nylon Loop

Innovation for Health and Security

Los Alamos Bioscience Division

Advanced Light Source, Berkeley, CA

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos Bioscience Division **Črystal goes here**

Growing protein crystals

Looking at crystals with Xrays

Getting pictures of proteins from diffraction spots

Los Alamos **Bioscience Division**

Getting pictures of proteins from diffraction spots

Diffraction pattern

Analysis of diffraction spots

Picture and model of macromolecule

The intensities of X-ray diffraction spots depend on what is in the crystal

Electrons in a protein crystal (p is high where there are many electrons)

Diffraction pattern $(I_h \text{ is intensity of spot "h"})$

$$\rho(x) = \sum_{h} F_{h} e^{i\phi_{h}} e^{-2\pi i hx}$$

$$F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx \qquad I_h = F_h^2$$

We can almost calculate a picture of where the atoms are from the diffraction pattern (but are missing the phases of diffraction spots)

ho(x) (Where the atoms are)

 F_h is square root of measured intensity of spot *h*

$$\rho(x) = \sum_{h} F_{h} e^{i\phi_{h}} e^{-2\pi i hx}$$

We do not know the phase (ϕ_h)

Estimating crystallographic phases: example with multiwavelength X-ray data

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

First figure out where the Se atoms are located

Then use the Se atoms and the diffraction intensities to draw a picture of all the atoms

Estimating crystallographic phases with multiwavelength X-ray data

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

<u>Wavelength</u>

λ

Scattering density

ρ

<u>Structure Factor</u>

Intensity o<u>f</u> diffraction spot

$$\mathbf{F}_{\mathbf{h}} = F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx$$

 $\boldsymbol{I}_{h} = \left| \mathbf{F}_{\mathbf{h}} \right|^{2}$

Estimating crystallographic phases with multiwavelength X-ray data

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

<u>Waveleng</u>	th Scattering density	<u>Structure Factor</u>	Intensity o <u>f</u> <u>diffraction spot</u>
λ_1	$\rho(x)$	$\mathbf{F}_{\mathbf{h}} = F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx$	$\boldsymbol{I_h} = \left \mathbf{F_h} \right ^2$
λ_2	$\rho'(x) = \rho(x) + \Delta \rho(x)$	$\mathbf{F}_{\mathbf{h}}' = \mathbf{F}_{\mathbf{h}} + \Delta \mathbf{F}_{\mathbf{h}}$	$I_h' = \left \mathbf{F_h} + \Delta \mathbf{F_h} \right ^2$

Estimating crystallographic phases with multiwavelength X-ray data

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

How to figure out where the Se atoms are:

Assume that structure factors for Se are similar to changes between wavelengths:

 $\left| \Delta \mathbf{F}_{\mathbf{h}} \right| \approx \left| F_{h}' - F_{h} \right|$

Then use techniques from small-molecule crystallography to find the Se atoms (guess locations, compare calculated and observed ΔF_h , update guess)

Wavelength

Estimating crystallographic phases with multiwavelength X-ray data

•Measure diffraction (I_h , I'_h) at two X-ray wavelengths near absorption edge of selenium

-Differences in diffraction are due to changes in scattering from the Se atoms (ΔF_h)

Structure Factor

Intensity o<u>f</u> diffraction spot

$$\lambda_1 \qquad \rho(x) \qquad \mathbf{F}_{\mathbf{h}} = F_h e^{i\phi_h} = \int \rho(x) e^{2\pi i h x} dx \qquad \mathbf{I}_h = |\mathbf{F}_{\mathbf{h}}|^2$$

 $\lambda_2 \quad \rho'(x) = \rho(x) + \Delta \rho(x) \qquad \mathbf{F}_{\mathbf{h}}' = \mathbf{F}_{\mathbf{h}} + \Delta \mathbf{F}_{\mathbf{h}} \qquad \mathbf{I}_h' = \left| \mathbf{F}_{\mathbf{h}} + \Delta \mathbf{F}_{\mathbf{h}} \right|^2$

If we know where the Se atoms are ...

<u>Scattering density</u>

we know:
$$\Delta \rho(x)$$

...so we can calculate: $\Delta \mathbf{F}_{\mathbf{h}}$
and the phase (ϕ_h) must satisfy: $I'_h = \left| I_h^{1/2} e^{i\phi_h} + \Delta \mathbf{F}_{\mathbf{h}} \right|^2$

Many ways to find the phases

Method	Source of phasing information
SIR – single isomorphous replacement	A few heavy atoms (e.g., Hg, Au) in "derivative" contribute to differences from "native"
SAD – single-wavelength anomalous diffraction	A few atoms (e.g., Se, I, Hg atoms) contribute to "anomalous" differences in diffraction between spot <i>h</i> and spot <i>-h</i>
MAD – multiple-wavelength anomalous diffraction	A few atoms contribute to anomalous and wavelength-dependent "dispersive" differences
SIRAS, MIR	Combinations of SIR and SAD
Molecular replacement	Molecular location and phases are found using a related molecule as a template
Direct methods	Guess where atoms are, good guesses match the measured structure factors

The PHENIX Project

Phenix

Lawrence Berkeley Laboratory

