Improving low-resolution refinement of nucleic acids in *Phenix*

Oleg V. Soboleva, Pavel V. Afoninea, Alexandre Urzhumtsevb,c, Nigel W. Moriartya and Paul D. Adamsa,d

aLawrence Berkeley National Laboratory, Berkeley, CA
bDepartment of Integrated Structural Biology, IGBMC, Illkirch, France
cPhysical Department, Université de Lorraine, France
dDepartment of Bioengineering, University of California at Berkeley, Berkeley, CA

WCPCW
Monterey, 2015
Restraints and data resolution

• **Refinement target** - a weighted sum of experimental data (E_{data}) and *a priori* chemical knowledge terms (restraints; $E_{\text{restraints}}$): $E_{\text{total}} = w \times E_{\text{data}} + E_{\text{restraints}}$

• **Choice of restraints** depends on data quality (resolution):

 - **<1Å**: unrestrained refinement
 - **>3Å**: more restraints needed

 \[
 E_{\text{restraints}} = \ldots + E_{\text{Ramachandran}} + E_{\text{NCS}} + E_{\text{ReferenceModel}} + E_{\text{SecondaryStructure}} + \ldots
 \]

 - **1-3Å**: *standard* restraints are necessary

 \[
 E_{\text{restraints}} = E_{\text{bond}} + E_{\text{angle}} + E_{\text{dihedral}} + E_{\text{nonbonded}} + E_{\text{planarity}} + E_{\text{chirality}}
 \]
Insufficiency of standard restraints at low resolution

- Example: real-space refinement with simulated annealing of 3gbi against 4Å 2mFo-DFc map with `phenix.real_space_refine`
- Refinement with standard restraints fits model into map well, but geometry is poor (no correct basepairing and stacking interactions)
Geometry restraints for DNA/RNA in Phenix

1. **Hydrogen bonds** between base pairs:
 - Bond length restraints
 - Bond angles restraints

2. **Planarity** of base-pairs:
 - Planarity restraint
 - Parallelity restraints

3. **Parallelity** of stacking nucleobases:
 - Parallelity restraints
Hydrogen bond restraints

The values for hydrogen bond lengths differ for different basepairing type and participating atoms:

- 122.8 (3.00)
- 119.1 (2.59)
- 122.2 (2.88)

The values for hydrogen bond lengths of the same type are essentially the same for DNA and RNA:

- 2.78 (0.10)
- 2.88 (0.07)
- 2.93 (0.10)

- 117.3 (2.86)
- 116.3 (2.66)
- 120.7 (2.20)
Stacking and basepairing restraints

Basepairing RMSDs from 0:
• parallelity: 14.87°
• planarity: 0.188Å

Stacking parallelity RMSD from 0°: 11.54°
DNA/RNA: example of low-resolution refinement

- Real-space refinements with simulated annealing against 4Å 2mFo-DFc map with `phenix.real_space_refine`

Starting model

- Nucleobases somewhat parallel with a number of outliers

Standard restraints

- Geometry becomes worse: nucleobases are not parallel, poor H-bonding

Standard + stacking + basepair + H\textsubscript{bond} restraints

- Nucleobases are parallel, correct H-bonding
Implementation in Phenix

• Available in all relevant tools (phenix.refine, phenix.real_space_refine, phenix.geometry_minimization, phenix.dynamics) via secondary_structure.nucleic_acid scope

• Turn on restraints:
 secondary_structure.enabled=True

• Generate phil file with NA definitions:
 phenix.secondary_structure_restraints <model.pdb>