
	 1	Computational	Crystallography	Newsletter	(2021).	Volume	12,	Part	1.	

Computational
Crystallography
Newsletter	

PDB is 50, CSD Lessons II, HKLviewer

V
o

lu
m

e
T

W
EL

V
E

JA
N

U
A

R
Y

 M
M

X
X

I

The	Computational	Crystallography	Newsletter	(CCN)	is	a	regularly	distributed	electronically	via	email	and	the	Phenix	website,	
www.phenix-online.org/newsletter.	 Feature	 articles,	meeting	 announcements	 and	 reports,	 information	 on	 research	 or	 other	
items	of	interest	 to	computational	crystallographers	or	crystallographic	software	users	can	be	submitted	 to	the	editor	at	any	
time	for	consideration.	Submission	of	text	by	email	or	word-processing	files	using	the	CCN	templates	is	requested.	The	CCN	is	
not	a	formal	publication	and	the	authors	retain	full	copyright	on	their	contributions.	The	articles	reproduced	here	may	be	freely	
downloaded	for	personal	use,	but	to	reference,	copy	or	quote	from	it,	such	permission	must	be	sought	directly	from	the	authors	
and	agreed	with	them	personally.	

1

Table	of	Contents	
•Phenix	News	 	 	 	 1	
•Expert	Advice		
• Fitting	Tip	#20	–	In-plane	or	out-of-plane	
H	atom	placement	on	the	edges	of	
aromatic	rings	 	 	 	 2	

•Short	Communications	
• PDB50:	Celebrating	50	Years	of	the	
Protein	Data	Bank	in	2021	 	 5	

• Lessons	from	using	the	Cambridge	
Structure	Database:	II	–	Element	
specification	X/Z		 	 	 6	

• The	Importance	of	Being	Positive:	Charged	
ligands	that	bind	nucleic	acids	 	 9	

•Articles	
• HKLviewer,	a	new	3D	reflection	data	
viewer	for	CCTBX	 	 	 15	

• Running	CCTBX	and	PyMOL	in	the	same	
Jupyter	Notebook	 	 	 26	

	Editor	
Nigel	W.	Moriarty,	NWMoriarty@LBL.Gov	

Phenix	News	
Announcements	
New	Phenix	Release	
Highlights	 for	 the	 1.19.2	 version	 of	 Phenix	
released	in	Februray	2021	include:	

2

ü phenix.real_space_refine	
• Improved	 rotamer	 fitting	 –	
multiprocessing,	 NCS	 constraints	 work	
on	one	copy	only	and	propagate	changes	
to	all	related	copies	

• Improved	 map	 to	 restraints	 weight	
calculation	

• Morphing	can	now	use	multiprocessing	
ü New	methods	
• phenix.local_resolution:	calculates	a	local	
resolution	map	

• phenix.local_aniso_sharpen:	 optimizes	 a	
map	 taking	 into	 account	 local	
resolution-dependence	 and	 anisotropy	
of	the	map	and	its	errors	

ü High-level	 scriptable	 Python	 tools	 are	
now	available	 for	map	&	model	analyses,	
manipulation	and	model-building	

ü Restraints	
• Adjusting	the	"positions"	of	atom	names	
is	 (pseudo-)symmetric	 amino	 acid	 side	
chains	is	now	the	default	

• Improved	 restraints	 for	Arginine	allows	
more	flexibility	of	the	Cγ	atom	

ü Amber	
• Automatic	creation	of	Amber	files	in	
phenix.refine	GUI	

• Added	AmberPrep	GUI	

	 2	Computational	Crystallography	Newsletter	(2021).	Volume	12,	Part	1.	

3

ü Restraints	
• Restraints	added	for	FeS	
• Metal	coordination	library	is	default	to	
Zn+2	and	FeS	clusters	

ü Rama-Z:	New	global	Ramachandran	score	
for	identifying	protein	structures	with	
unlikely	stereochemistry	in	Command	
Line	Interface	(phenix.rama_z,	
mmtbx.rama_z)	and	GUI	(validation	
reports).	

ü Density	modification	for	cryo-EM	
• Includes	model-based	density	
modification	with	automatic	model	
generation	

• Optimized	defaults	and	additional	
documentation	

ü Real-space	refinement	
• Hydrogen	atoms	no	longer	included	in	
map	target	function	improving	fit	

• Add	NQH	flip	option	(enabled	by	
default)	

ü Other	
• New	tool	for	ordered	solvent	picking	in	
cryo-EM	maps	(phenix.douse)	

• New	map	and	model	superposition	tool	
(phenix.match_maps)	

• New	FindProgram	tool	to	find	any	
Phenix	program	with	a	text	search	

• Project	details	now	has	a	button	for	
opening	the	README	file	for	tutorials	

Please	 note	 that	 this	 new	 publication	 should	
be	used	to	cite	the	use	of	Phenix:	
Macromolecular	 structure	 determination	
using	 X-rays,	 neutrons	 and	 electrons:	 recent	
developments	 in	 Phenix.	 Liebschner	 D,	
Afonine	 PV,	 Baker	ML,	 Bunkóczi	 G,	 Chen	 VB,	
Croll	TI,	Hintze	B,	Hung	LW,	Jain	S,	McCoy	AJ,	
Moriarty	 NW,	 Oeffner	 RD,	 Poon	 BK,	 Prisant	
MG,	 Read	 RJ,	 Richardson	 JS,	 Richardson	 DC,	
Sammito	 MD,	 Sobolev	 OV,	 Stockwell	 DH,	
Terwilliger	 TC,	 Urzhumtsev	 AG,	 Videau	 LL,	
Williams	 CJ,	 Adams	 PD:	 Acta	 Cryst.	 (2019).	
D75,	861-877.	
Downloads,	 documentation	 and	 changes	 are	
available	at	phenix-online.org	

4

Expert	advice	
Fitting	Tip	#20	–	In-plane	or	out-of-plane	H	
atom	placement	 on	 the	 edges	 of	 aromatic	
rings	
Jane	 Richardson	 and	 Dave	 Richardson,	 Duke	
University	
Most	 H	 atom	 placements	 in	 proteins	 and	 nucleic	
acids,	 and	 even	 on	 ligands,	 are	 fairly	
straightforward	 matters,	 either	 staggered	
tetrahedral	 on	 single-bonded	 parent	 atoms	 or	
planar	 on	 double-bonded	 parents.	 	 But	 cases	
where	the	parent	atom	is	bonded	to	the	edge	of	an	
aromatic	 ring	 do	 not	 neatly	 fit	 those	 paradigms	
and	are	somewhat	more	complex	and	diverse.	
Methyl	groups	on	aromatic	ring	edges:	out-of-plane	
Heme	 groups	 in	 proteins	 and	 thymine	 bases	 in	
DNA	are	the	most	commonly	encountered	cases	of	
a	methyl	on	the	edge	of	an	aromatic	ring.		Figure	1	
shows	 clear,	 positive	 difference	 peaks	 for	 the	 H	
atoms	of	a	heme	methyl	at	0.88Å	resolution.	
When	a	3-fold	tetrahedral	group	lies	across	a	bond	
to	 a	 2-fold	 planar	 group,	 the	 most	 favored	
dihedrals	 put	 no	 H	 either	 in-plane	 (0°)	 or	
staggered	(60°).		Instead,	there	are	two	minimum-
energy	 conformations,	 each	 with	 one	 H	
perpendicular	 to	 the	plane	and	 the	other	 two	H's	
30°	from	the	plane,	as	seen	 in	the	 figure.	 	As	true	
for	other	methyl	moieties,	Reduce	does	not	freely	
rotate	 these	 methyl	 H's.	 	 However,	 instead	 of	 a	
single	 staggered	 placement,	 on	 ring	 edges	 there	
are	two	possibilities	to	decide	between,	chosen	in	
Reduce	 by	 minimizing	 clashes.	 	 In	 the	 case	
illustrated,	 Reduce	 clearly	 picked	 the	 correct	
alternative.	 	 If	you	use	another	method	of	placing	
hydrogen	 atoms,	 you	 should	 check	 that	 on	
aromatic	 ring	 edges	 it	 produces	 an	 arrangement	
close	 to	 one	 of	 the	 favored	 90°-30°-30°	
alternatives.	 	 Longer	 aliphatic	 branches	 off	 the	
edge	of	aromatic	rings	just	follow	normal	rules.	
OH	groups	on	aromatic	ring	edges:	in-plane	
Most	common	OH	groups,	such	as	on	Ser	or	Thr,	or	
SH	for	Cys,	favor	staggered	dihedral	angles	(+60°,		
180°,	or	 -60°).	 	However,	 the	OH	on	Tyr	or	 other	

	 3	Computational	Crystallography	Newsletter	(2021).	Volume	12,	Part	1.	

5

aromatic	 rings	 prefer	 an	 in-plane	 position.		
Figure	2	shows	 the	clear,	positive	difference	peak	
for	 the	 H	 of	 a	 Tyr	OH	 at	 0.69Å	 resolution,	 in	 the	
plane	of	the	Tyr	aromatic	ring.			This	case	also	has	
a	 well-placed	 H-bond	 to	 reinforce	 that	 position,	
but	 Tyr	OH	 favors	 either	 the	 0°	 or	 180°	 in-plane	
position	even	with	no	H-bond.		An	NH2	(such	as	on	

6

a	 guanine	 base),	 in	 contrast,	 is	 a	 simpler	 case,	
because	 the	 two	 H	 atoms	 occupy	 both	 of	 the	
possible	 in-plane	 positions	 and	 have	 no	
alternatives.
The	bottom	line	
Hydrogen	addition,	placement	and	optimization	is	
done	 by	 various	 automated	 routines.	 	 However,	

Figure	2:		Correct	placement	of	an	in-plane	OH	hydrogen	on	a	Tyr	ring,	confirmed	by	an	H-bond	(green	dots)	and	a	
positive	 difference	 density	 peak	 (blue	 contours)	 at	 0.69Å	 resolution	 in	 the	 1yk4	 rubredoxin	 structure	 (Bonisch	
2005).			

Figure	 1:	 	 Correct	H	 atom	placement	 (bonds	 in	 black)	 for	 the	Cmc	heme	methyl	 in	 the	 1gwe	catalase	 structure	
(Murshudov	 2002),	with	 one	H	 perpendicular	 to	 the	 plane	 of	 the	 local	 heme	 ring	 (red).	 	 Blue	 contours	 are	 the	
methyl	H	difference	density	at	+2.7σ,	calculated	from	the	model	with	hydrogens	deleted.		Gray	contours	are	2mFo-
DFc	electron	density	at	5σ.	

	 4	Computational	Crystallography	Newsletter	(2021).	Volume	12,	Part	1.	

7

understanding	the	differing	geometries	of	favored	
conformations	 for	H	atoms	whose	parent	atom	 is	
attached	 to	 the	 edge	 of	 an	 aromatic	 ring	 can	
provide	a	sanity	check	on	whether	the	automated	
system	 is	 doing	 those	 cases	 correctly,	 which	 has	

8

not	 always	 been	 true.	 	 Incorrect	 placement	 can	
produce	 surprisingly	 large	 clashes	 to	 nonpolar	 H	
or	miss	H-bonds	 for	 polar	H.	 	 And	 if	you're	 lucky	
enough	 to	 have	 ultra-high	 resolution,	 you	 can	
check	the	hydrogen	difference	density.	

9

References:	
Bonisch	H,	Schmidt	CL,	Bianco	P,	Ladenstein	R	(2005)	Acta	Crystallogr	D61:	990-1004	[1gwe]	

Murshudov	 GN,	 Grebenko	 AI,	 Brannigan	 JA,	 Antson	 AA,	 Barynin	 VV,	 Dodson	 GG,	 Dauter	 Z,	 Wilson	 KS,	 Melik-
Adamyan	WR	(2002)	The	structures	of	Lysodeiktius	catalase,	 its	 ferryl	 intermediate	(Compound	II)	 and	NADPH	
complex,	Acta	Crystallogr	D58:	1972-1982	[1yk4]	

	

	

	

	

	

	

5	

5	Computational	Crystallography	Newsletter	(2021).	12,	5–5	

SHORT COMMUNICATIONS

1

PDB50:	Celebrating	50	Years	of	the	Protein	Data	Bank	in	2021	
Worldwide	Protein	Data	Bank	Foundation	

Correspondence	email:	zardecki@foundation.wwpdb.org	

2

In	 1971,	 the	 structural	 biology	 community	 came	
together	 and	 established	 the	 single	 worldwide	
archive	 for	 macromolecular	 structure	 data–the	
Protein	Data	Bank	(PDB)–as	 the	 first	open	access	
digital	 data	 resource	 in	 all	 of	 biology.	 From	 its	
inception,	 the	 PDB	 has	 embraced	 the	 FAIR	
Principles	 (Findability,	 Accessibility,	 Inter-
operability,	 Reusability).	 PDB	 data	 are	 used	
directly	 by	 many	 millions	 of	 users	 exploring	
fundamental	 biology,	 biomedicine,	 biotechnology,	
bioengineering,	 and	 energy	 sciences,	 and	
repackaged	 and	 distributed	 by	 more	 than	 400	
other	digital	data	resources.		

Since	 2003,	 the	 PDB	 archive	 has	 been	 jointly	
managed	 by	 the	 Worldwide	 PDB	 (wwPDB,	
wwpdb.org)	 partnership,	 which	 ensures	 that	 the	
PDB	 is	 freely	 and	publicly	 available	 to	 the	 entire	
global	 community	 of	 data	 depositors	 and	 data	
consumers	at	no	charge	and	with	no	limitations	on	
usage.	 Current	 wwPDB	 member	 organizations	
include	 the	 US	 RCSB	 Protein	 Data	 Bank	
(RCSB.org),	 the	 Protein	 Data	 Bank	 in	 Europe	

3

(pdbe.org),	 Protein	 Data	 Bank	 Japan	 (pdbj.org),	
and	the	Biological	Magnetic	Resonance	Data	Bank	
(bmrb.io;	headquartered	in	the	US,	also	operating	
in	Japan).		

Today,	 the	 PDB	 archive	 contains	 >170,000	
structures	of	proteins,	nucleic	acids,	and	complex	
assemblies	 that	 help	 researchers,	 educators,	 and	
students	understand	facets	of	the	entire	spectrum	
natural,	 physical,	 and	 engineering	 sciences	 in	
three-dimensions	 at	 the	 atomic	 level,	 spanning	
from	agriculture	to	zoology.	

To	 celebrate	 the	 first	 half	 centenary	 of	 the	 PDB,	
wwPDB	 partners	 will	 host	 golden	 anniversary	
symposia	and	other	celebratory	events	scheduled	
throughout	2021.		

The	 inaugural	 wwPDB	 sponsored	 Global	 Online	
Celebration	 will	 occur	 on	 May	 4-5,	 2021,	 hosted	
by	 the	 American	 Society	 for	 Biochemistry	 and	
Molecular	 Biology.	 Registration	 will	 open	 in	
January.		

5

Additional	 international/regional	 events	 and	
celebrations	 will	 include	 the	 2021	 American	
Crystallographic	 Association	 Transactions	
Symposium,	 an	 International	 Union	 of	
Crystallography	 25th	 Congress	 Satellite	 Meeting,	
an	 EMBL	 Meeting:	 Bringing	 Macromolecular	
Structures	 to	 Life,	 and	 a	 symposium	 at	 the	 2021	
Asian	 Crystallographic	 Association	 Meeting.	

6

Please	 visit	 the	 regularly	 updated	 wwPDB	
Foundation	 website	
(foundation.wwpdb.org/pdb50.html)	 for	
announcements	 of	 additional	 events	 and	 the	
wwPDB	 website	 (wwpdb.org/pdb50)	 for	 other	
ways	 that	 you	 and	 your	 colleagues	 to	 celebrate	
PDB50.
	

4

Confirmed	Speakers	include:	
Edward	Arnold	-	Rutgers,	The	State	University	of	New	Jersey	
Helen	M.	Berman	-	Rutgers,	The	State	University	of	New	Jersey	and	University	of	Southern	California	
Thomas	L.	Blundell	-	University	of	Cambridge	
Alexandre	M.	J.	J.	Bonvin	-	Utrecht	University	
Stephen	K.	Burley	-	Rutgers,	The	State	University	of	New	Jersey	and	University	of	California	San	Diego	
Wah	Chiu	-	Stanford	University	
Johann	Deisenhofer	-	University	of	Texas	Southwestern	Medical	Center	
Juli	Feigon	-	University	of	California	Los	Angeles	
Angela	M.	Gronenborn	-	University	of	Pittsburgh	
Jennifer	L.	Martin	-	University	of	Wollongong	
Stephen	L.	Mayo	-	California	Institute	of	Technology	
Zihe	Rao	-	ShanghaiTech	University	and	Tsinghua	University	
Hao	Wu	-	Boston	Children's	Hospital	and	Harvard	Medical	School	

	

	

6	

6	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	6–8	

	

1

Lessons	from	using	the	Cambridge	Structure	Database:	II	–	Element	
specification	X/Z	
Nigel	W.	Moriartya*	
aMolecular	Biosciences	and	Integrated	Bioimaging,	Lawrence	Berkeley	National	Laboratory,	
Berkeley,	CA	94720	

*Correspondence	e-mail:	nwmoriarty@lbl.gov	

Figure	1:	Example	of	an	arginine	amino	acid.	

2

Preface	
Continuing	 the	 series	 about	 lessons	 from	
using	 the	 Cambridge	 Structural	 Database	
(CSD),	 this	 work	 delves	 deeper	 into	 the	
nuances	 of	 the	 Conquest	 interface.	 More	
information	 about	 goals	 in	 the	 previous	
installment	(Moriarty,	2020).	

Introduction	
Conquest	 (Bruno	 et	 al.,	 2002),	 a	 structure	
based	 search	 tool,	 is	 an	 interface	 to	 the	
Cambridge	Structure	Database	(CSD,	Groom	et	
al.,	2016).	The	CSD	is	arguably	a	better	source	
for	 accurate	 geometry	 information	 that	 is	
greatly	 enhanced	 by	 the	 user-friendly	 tools	
for	dredging	up	the	structural	matches.	

One	 feature	 of	 the	 Conquest	 search	 is	 the	
specification	 of	 internal	 coordinates	 that	 can	
be	used	in	analyses.	For	example,	one	can	add	
a	 specific	 bond	 in	 the	 search	 fragment	 the	
length	of	which	 is	determined	for	each	of	 the	
matching	 entries.	 This	 results	 in	 a	 list	 of	
matching	 entries	 along	with	 the	 value	 of	 the	
bond	 length	 in	 each.	 This	 is	 exactly	 the	
desired	 information	 for	 determination	 of	 the	
ideal	values	for	restraints.	

Element	specification	of	X	versus	Z	
Arginine	 is	 a	 charged	 essential	 amino	 acid	
containing	 the	 guanidinium	moiety.	 Figure	 1	
shows	the	guanidinium	group	terminating	the	
side	 chain	 with	 a	 positively	 charged	 central	
carbon	 atom	 and	 an	 electronic	 resonance	
bond	structure.	Note	that	the	generally	planar	

3

structure	 causes	 one	 of	 the	 nitrogen	 atoms	
(Nη1)	 to	 be	 cis	 to	 the	 1-4	 interactive	 carbon	
atom	 (Cδ).	 This	 steric	 interaction	 causes	 the	
Nη1–Cζ–Nε	angle	to	be	larger	than	Nη2–Cζ–Nε	
as	determined	by	Malinska	et	al.	 (2016).	Part	
of	the	work	involved	using	the	CSD.	

Recently,	 the	 CSD	 structure	 search	 of	 the	
guanidinium	 group	 was	 repeated	 as	 part	 of	
study	(Moriarty	et	al.,	2020)	into	the	planarity	
of	the	guanidinium	group.	Using	the	Conquest	
chemical	 fragment	 interface,	 a	 simple	 search	
can	 be	 constructed	 as	 shown	 in	 figure	 2a.	
Searching	with	 the	 filters	 in	 figure	2b	 results	
in	 208	 matching	 entries.1	 The	 number	 of	
entries	 is	 increased	 but	 the	 general	 point	 is	
1Note	that	the	version	of	the	CSD	database	used	in	this	
work	–	November	2019	+	2	updates	–	was	different	
from	both	the	two	previous	works.		

	

	

7	

7	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	6–8	

4

the	 same.	 In	 addition,	 a	 set	 of	 internal	
coordinates	 was	 specified	 in	 order	 to	 get	
values	 suitable	 for	 restraints.	 These	 included	
the	 dihedral	 from	 the	 X	 to	 the	 branching	
carbon	atom.	A	 total	of	208	matching	entries	
containing	 898	 examples	 of	 the	 search	
fragment	 were	 found.	 This	 implied	 that,	 on	
average,	 there	were	more	than	3	examples	of	
moiety	 in	 each	 matching	 entry.	 However,	 a	
viewing	 of	 each	 of	 the	 entries	 seemed	 to	

	
	
Figure	 2:	 (a)	 Simple	 Conquest	 search	
fragment	 for	 the	 arginine.	 Image	 taken	 from	
Conquest	 Draw	 window.	 (b)	 Conquest	 filter	
settings.	

(a)	

(b)	

5

contradict	 that	 assertion.	 Furthermore,	 the	
list	of	results	specifies	that	3	examples	exist	in	
ARGIND11	but	 the	 entry	 (shown	 in	 figure	3)	
appears	to	have	only	one	guanidinium.		

The	 problem	 lies	 with	 the	 use	 of	 X	 at	 the	
connecting	 end	 of	 the	 side	 chain.	 Conquest	
uses	X	to	search	for	any	atom	at	that	position.	
This	includes	hydrogen	atoms.	Therefore,	the	
search	 finds	 three	 examples	 of	 the	 fragment	
and	 internal	 coordinates	 because	 in	 arginine	
the	 Cδ	 atom	 is	 bound	 to	 a	 carbon	 atom	 (Cγ)	
and	 two	 hydrogen	 atoms	 (Hγ2,	 Hγ3).	 This	
effectively	 triples	 the	number	 of	 instances	of	
the	 search	 fragment	 and	 would	 contaminate	
the	 internal	 coordinates	 that	 include	 the	 X	
atom.	

The	image	in	figure	3	is	produced	by	Mercury	
(Macrae	 et	 al.,	 2006,	 2008),	 a	 visualisation	
and	analysis	in	the	CSD	suite.	Another	clue	to	
the	unusual	behaviour	of	 the	X	designation	 is	
the	three	torsion	angles	shown	including	two	
ending	at	Hydrogen	atoms.		

Thankfully,	 Conquest	 has	 an	 alternative	 to	 X	
that	 solves	 the	 problem.	 The	 Z	 specification	
matches	 any	 atom	 except	 hydrogen	 atoms.	
Repeating	the	search	with	Z	substituted	for	X	
results	 in	 208	 entries	 and	 312	 examples.	 It	
also	 removes	 the	 additional	 torsion	 angles	
from	the	Mercury	interface.	

Conclusions	
As	 stated	 in	 the	 conclusions	 of	 the	 previous	
article	 in	 this	 series	 “Always	 verify	 that	 the	
results	 from	 a	 structure	 search	 are	
reasonable.”	 The	 first	 simple	 search	 attempt	
in	 this	 example	 resulted	 in	 too	 many	
examples	of	the	guanidinium	group.	Using	the	
X	 and	 Z	 element	 specification	 correctly	 is	 a	
powerful	tool	for	filtering	results.	

	

	

8	

8	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	6–8	

Figure	 3:	 Conquest	 search	 fragment	 for	 the	 arginine	 showing	 the	 guanidinium	 group	 with	
internal	coordinates	in	green.	

6

References	
Bruno,	I.	J.,	Cole,	J.	C.,	Edgington,	P.	R.,	Kessler,	M.,	Macrae,	C.	F.,	McCabe,	P.,	Pearson,	J.	&	Taylor,	
R.	(2002).	Acta	Crystallogr.	B.	58,	389–397.	

Groom,	C.	R.,	Bruno,	I.	J.,	Lightfoot,	M.	P.	&	Ward,	S.	C.	(2016).	Acta	Crystallogr.	Sect.	B	Struct.	Sci.	
Cryst.	Eng.	Mater.	72,	171–179.	

Macrae,	C.	F.,	Bruno,	I.	J.,	Chisholm,	J.	A.,	Edgington,	P.	R.,	McCabe,	P.,	Pidcock,	E.,	Rodriguez-
Monge,	L.,	Taylor,	R.,	Streek,	J.	van	de	&	Wood,	P.	A.	(2008).	J.	Appl.	Crystallogr.	41,	466–470.	

Macrae,	C.	F.,	Edgington,	P.	R.,	McCabe,	P.,	Pidcock,	E.,	Shields,	G.	P.,	Taylor,	R.,	Towler,	M.	&	
Streek,	J.	van	de	(2006).	J.	Appl.	Crystallogr.	39,	453–457.	

Malinska,	M.,	Dauter,	M.	&	Dauter,	Z.	(2016).	Protein	Sci.	Publ.	Protein	Soc.	25,	1753–1756.	

Moriarty,	N.	W.	(2020).	Comput.	Crystallogr.	Newsl.	11,	7–10.	

Moriarty,	N.	W.,	Liebschner,	D.,	Tronrud,	D.	E.	&	Adams,	P.	D.	(2020).	Acta	Crystallogr.	Sect.	
Struct.	Biol.	76,	1159–1166.	

	

	

	 9	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

1

The	Importance	of	Being	Positive:	Charged	ligands	that	bind	nucleic	acids	
Jane	S.	Richardsona,	Nigel	W.	Moriartyb,	Christopher	J.	Williamsa,	&	David	C.	Richardsona	

aDepartment	of	Biochemistry,	Duke	University,	Durham,	NC	27710,	USA	
bMolecular	Biosciences	and	Integrated	Bioimaging,	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	
94720,	USA	

2

Introduction	
Both	 PDB	 and	 mmCIF	 format	 include	
possible	 ways	 to	 specify	 explicit	 charge.	
However,	 that	 is	 only	 seldom	 used	 and	
charge	 is	 primarily	 coded	 by	 adding	 or	
subtracting	 H	 atoms,	 which	 is	 done	 from	
dictionary	lookups.	Those	dictionaries	have	
been	 tuned	 quite	 well	 for	 proteins	 in	 the	
usual	pH	range,	with	NH3	in	Lys	or	at	the	N-
terminus,	 5	 hydrogen	 atoms	 on	 Arg	
guanidinium,	and	negative	COO	in	Asp,	Glu,	

and	 C-terminus.	 Charges	 are	 respected	 on	
single-atom	 ions	 such	 as	 Cl–,	 Mg+,	 or	 Zn2+.	
However,	by	current	convention,	neutrality	is	
constrained	 for	 essentially	 everything	 else.	
That	has	involved	adding	a	hydrogen	atom	to	
one	 oxygen	 atom	 of	 each	 nucleic-acid	
phosphate,	 distorting	 conformation	 for	 ring-
buried	charges	such	as	1-methyl	adenine,	and	
making	 non-protein	 NH3	 groups	 such	 as	
spermidine	 into	 NH2	 groups	 (either	 with	
planar		or	with	tetrahedral	geometry).	Two	H	
atoms	 on	 a	 tetrahedral	 N	would	 presumably	
occupy	 some	 mixture	 of	 the	 three	 possible	
positions,	so	even	at	 a	pH	favoring	neutrality	
the	best,	but	probably	 impractical,	procedure	
would	actually	be	to	model	all	 three	H	atoms	
at	 2/3	 occupancy	 and	 refine	 those	
occupancies	with	respect	to	local	contacts.		
It	is	not	possible	to	solve	this	charge	problem	
correctly	 as	 a	 general	 case,	 without	 detailed	
information	 about	 pH	 and	 local	 environment	
plus	 difficult	 calculations,	 since	a	 great	many	
cases	have	more	than	one	possibility.	Most	of	

3

us	 are	 familiar	 with	 that	 issue	 for	 histidine	
protonation.	However,	we	would	advocate	for	
expanding	 charge	 exceptions	 beyond	 the	
currently	 provincial	 protein-centric	
dictionaries	 to	 include	 at	 least	 the	 most	
important	 exceptions	 appropriate	 for	 nucleic	
acids	and	their	commonest	ligands.		

Positive	charges	for	spermidine	&	spermine	
Spermidine,	 with	 three	 amino	 groups,	 and	
spermine,	 with	 four,	 are	 the	 most	 common	
biological	 polyamines,	 serving	 quite	 varied	
roles.	 In	structural	biology	they	are	primarily	
seen	as	stabilizers	of	nucleic	acid	backbone	in	
3D	structures,	similar	to	the	effect	of	Mg+.	The	
positive	charges	on	those	amino	groups	(NH3	
ends	and	internal	tetrahedral	NH2	groups)	are	
of	 course	 central	 to	 that	 function,	 making	
strong	 and	 directionally	 specific	 H-bonds,	
mostly	 to	 phosphate	 oxygen	 atoms.	 Figure	 2	
above	 shows	 the	 striking	 contrast	 in	 H-

Figure	1:	 	Positive	spermidine	(NH	atoms	blue)	 stabilizes	
negative	RNA	(red	PO4	O	atoms).	

	

	 10	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

4

bonding	 and	 clashes	 for	 a	 spermidine	
modeled	 as	 neutral	 (following	 the	 PDB	
dictionary)	 versus	 the	 same	 ligand	 modeled	
with	 charges.	 The	 MolProbity	 probescore	
(given	 in	 these	 figures)	 is	 a	 weighted	
combination	of:	
• -10	x	unfavorable	clash	overlap	volume,		
• +4	x	favorable	H-bond	overlap	volume,		

• +1	x	a	more	complex	function	of	favorable	
van	der	Waals	contact	closer	than	0.5Å.		

Those	 weights	 were	 chosen	 to	 approximate	
the	 vdW	 function	 for	 interaction	 of	 two	
isolated	atoms	(Word	1999).	For	probescores,	
as	 well	 as	 for	 nucleic-acid	 ligands,	 it's	
important	to	be	positive.	
Spermidine	 is	 actually	 a	 very	 difficult	 ligand	
for	 which	 to	 model	 the	 non-H	 atoms	 in	 the	
correct	 conformation,	 since	 at	 resolutions	
typically	 attainable	 for	 large	 RNA	 or	 DNA	
molecules	it	just	looks	like	a	long	smooth	tube	
without	 clear	wiggles.	 The	 two	 small	 clashes	
of	CH2	groups	at	bottom	in	Figure	2	probably	
mean	 that	 this	 spermidine	 conformation	 is	
not	 quite	 right.	 Providing	 the	 right	 H	 atoms	
can	 allow	 fitting	 to	 do	 a	 bit	 better	 for	

Figure	2:	Spermidine	(SPD)	a6218	in	Jamie	Cate's	new	7k00	cryoEM	ribosome	structure	at	2Å	resolution	(Watson	
2020),	 with	 all-atom	 contacts	 for	 clashes	 (hotpink	 spikes)	 and	 H-bonds	 (pillows	 of	 pale	 green	 dots).	 	 At	 left,	
neutral	 default-dictionary	 H	 atom	 placement	 gives	 so-so	 contacts	 and	 probescore,	 while	 charge-aware	H	 atom	
placement	gives	5	excellent	H-bonds	and	a	12%	better	absolute	probescore.		Visualization	in	KiNG	(Chen	2009)	

5

spermidine	 and	 other	 cases,	 since	 you	 can	
then	 check	 alternative	 models	 for	 better	 H-
bonding	and	fewer	clashes.		

Positive	charges	for	RNA-directed	inhibitors	
&	antibiotics	
Aminoglycoside	 antibiotics	 act	 by	 binding	 to	
the	RNA	in	ribosomes	and,	as	"amino"	in	their	
name	 suggests,	 they	 carry	 multiple	 positive	
charges.	 The	 7k00	 ribosome	 structure	 has	
bound	 paromomycin,	 which	 has	 four	 sugar	
rings	 labeled	I	 -	 IV	and	five	 charged	nitrogen	
atoms,	 marked	 by	 blue	 balls	 in	 the	 figures.	
This	 and	 similar	 antibiotics	 are	 strong	
mutagens	 for	 bacteria:	 normally,	 the	 two	
bases	at	 lower	right	 in	Figure	3	are	extruded	
from	the	base-paired	helix	only	 if	 the	 correct	
tRNA	 is	 bound,	 but	 the	 antibiotic	 by	 itself	
extrudes	 the	 two	 bases	 and	 turns	 on	 that	
signal	 all	 the	 time,	 as	 seen	 here,	 allowing	 an	
incorrect	 amino	 acid	 to	 be	 added	 to	 the	
growing	chain	quite	frequently.	
Looking	 locally	 at	 the	 charge	 sites	 on	
individual	 rings	 shows	 the	 charge	
consequences	 much	more	 dramatically.	 Ring	
II	of	paromomycin	has	two	nitrogen	branches.	

	

	 11	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

Figure	3:	 	Paromomycin	antibiotic	bound	 to	the	7k00	bacterial	 ribosome.	 	 	At	 left,	 adding	NH2	H	atoms	 to	the	5	
nitrogens	gives	overall	ligand	neutrality	and	a	quite	decent	absolute	probescore	of	69.9.		At	right,	NH3	H	atoms	give	
+	charges,	fewer	clashes	(red	and	yellow),	more	H-bonds	(green),	and	an	11%	better	probescore	of		77.5.	

Figure	4:		Contact	quality	for	paromomycin	ring	II	with	neutral	NH2	(at	left)	versus	charged	NH3	(at	right).	

Figure	5:		Contact	quality	for	paromomycin	ring	I.		This	N21	NH3	group	replaces	small	overlaps	with	H-bonds,	and	
also	introduces	a	stabilizing	H-bond	between	ring	I	and	ring	III.	

	

	 12	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

6

If	 they	 are	 given	 uncharged	 NH2	 groups,	 the	
left	 side	 of	 Figure	 4	 below	 shows	 clash	
overlaps	 and	 poor	 H-bond	 geometry.	 If	 they	
are	 given	 tetrahedral,	positively	 charged	NH3	
groups,	 the	 right	 side	 of	 Figure	 4	 shows	
excellent	 H-bonds	 and	 no	 unfavorable	
overlaps	at	all.	
Paromomycin	 rings	 I	 and	 III	 are	 even	 more	
interesting,	as	seen	in	Figure	5.	Here,	the	NH3	
version	of	ring	I	trades	slight	bad	overlaps	for	
good	H-bonds.	Even	more	importantly	there	is	
then	 a	 good	 H-bond	 to	 the	 ring	O	 of	 ring	 III,	
which	 stabilizes	 the	 compact	 overall	 binding	
conformation	of	the	paromomycin.	

Better	charges	now	in	Phenix	and	
MolProbity	
The	libraries	in	Phenix	and	MolProbity,	and	in	
most	 other	 model-building,	 validation	 or	
refinement	packages,	have	always	shown	RNA	
and	 DNA	 phosphates	 as	 negatively	 charged	
(that	is,	with	no	extra	H).	In	the	latest	updates	
of	 MolProbity	 and	 Phenix,	 the	 libraries	 now	
also	 correctly	 treat	 the	 always-positive	
ligands	shown	here	and	some	similar	ones.	As	
additional	 unambiguous	 cases	 are	 identified,	
those	 will	 also	 be	 added.	 If	 you	 deal	 with	
another	 such	 ligand	 that	 is	 unambiguously	
charged	across	usual	biological	environments,	
we'd	 appreciate	 hearing	 about	 it	 (and	 its	 3-
letter	PDB	residue	name).	
These	 comparisons	 also	 show	 that	
MolProbity's	 probescore	 is	 a	 sensitive	 and	
useful	 measure	 of	 model	 quality	 for	 bound	
ligands.	It	can	be	run	with	phenix.probe	on	the	
command-line	 (see	 notes	 below)	 to	 test	
alternative	 possible	 models	 for	 charge	 or	
conformation.	 The	 contact	 dots	 or	 scores	
make	 explicit	 what	 the	 surrounding	
macromolecule	 is	 actually	 seeing	 on	 the	
ligand,	 in	 your	 particular	 structure.	 The	

7

Reduce	program	quite	 successfully	uses	 such	
probescores	 to	 determine	 protonation	 and	
orientation	of	histidine	rings.	

Technical	notes:	
The	 probescore	 (Word	 1999)	 and	 details	 of	
its	 component	 scores	 can	 be	 obtained	 for	 a	
ligand	 in	 a	 PDB-format	 file	 with	 H	 atoms	
added	&	 optimized,	 e.g.	 the	 SPD	350	A-chain	
ligand	 in	 the	 1pot	 spermidine-binding	
protein,	by	the	following	command:	
	phenix.probe	 -c	 -both	 "chainA	 350"	 "not	
(chainA	 350)"	 1potH.pdb	 >1potH_SPD-
350_probescore.txt	
The	 text	 output	 appears	 in	 Schema	 1.	 The	
probescore	 (underlined	above)	 is	 the	 sum	of	
1)	the	"grand	tot"	probescore	with	the	ligand	
as	 source	 atoms	 and	 the	 surroundings	 as	
target	plus	2)	the	"grand	tot"	probescore	with	
the	 surroundings	 as	 source	 atoms	 and	 the	
ligand	 as	 target.	 It	 becomes	 larger	 for	 larger	
ligands,	 so	 comparisons	 are	 only	 valid	 as	
relative	 probescores	 between	 different	
instances	of	the	same	ligand.	For	a	ligand	that	
is	actually	seen	to	bind,	a	negative	probescore	
means	the	model	must	be	fit	wrong.	"Type"	is	
either	the	atom	type,	or	is	the	parent	atom	for	
an	 H.	 Probescores	 are	 also	 used	 (with	 the	 -
both	 flag	 and	 two	 atom	 selections)	 for	 the	
interactions	 of	 a	 single	 sidechain	 with	 its	
surroundings	 (in	Reduce's	 optimizations	 and	
flips),	 for	 macromolecular	 interfaces,	 for	 all	
interactions	inside	a	macromolecule	(with	a	-
self	flag	and	just	one	atom	selection)	or,	with	
custom	atom	selections,	 for	 instance	 to	 score	
and	 show	 all	 interactions	 between	 pairs	 of	
carboxyl	oxygens,	as	for	Fitting	Tip	#13	about	
"O-pairs"	(Richardson	2017).	
To	 visualize	 those	 ligand-to-protein	 all-atom	
contacts	 in	 KiNG,	 first	 make	 a	 1potH	
kinemage	 of	 the	 model	 (easiest	 is	 to	 drop	

	

	 13	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

8

1potH.pdb	 onto	 the	 KiNG	 window,	 ask	 for	 a	
"lots"	 kin	 and	 save	 it).	 Then	 run	 the	 same	
command	 as	 above	 but	 substituting	 -kin	 for	
the	-c	flag	(stands	for	"count")	and	appending	
the	output	onto	your	lots	kinemage:	
	phenix.probe	 -kin	 -both	 "chainA	 350"	 "not	
(chainA	350)"	1potH.pdb	>>1potH_SPD_lots.kin	
The	spermidine	 in	1pot	 is	an	 interesting	case	
because	the	protein	binds	the	SPD	with	good	
specificity	 by	 sandwiching	 its	 chain	 between	

program: probe.2.16.160928, run Mon Nov 16 06:25:16 2020
command: probe -c -both "chaina 350" "not (chaina 350)" 1potH.pdb
selection: both
name: dots
density: 16.0 dots per A^2
probeRad: 0.250 A
VDWrad: (r * 1.000) + 0.000 A
score weights: gapWt=0.25, bumpWt=10, HBWt=4

subgroup: 1->2; atoms: 32; max dots: 3124; max area: 195.2 A^2
 type # % score score/A^2 x 1000
 C wide_contact 333 10.7% 3.6 18.44
 C close_contact 271 8.7% 11.7 60.02
 C small_overlap 115 3.7% -5.1 -26.20
 C bad_overlap 4 0.1% -0.5 -2.76
 N wide_contact 90 2.9% 0.8 4.33
 N close_contact 122 3.9% 5.6 28.57
 N small_overlap 29 0.9% -1.0 -5.01
 N H-bond 136 4.4% 3.2 16.49

 tot contact: 816 26.1% 21.7 111.35
 tot overlap: 148 4.7% -6.6 -33.96
 tot H-bond: 136 4.4% 3.2 16.49

 grand tot: 1100 35.2% 18.3 93.89

contact surface area: 68.8 A^2

subgroup: 2->1; atoms: 5945; max dots: 685045; max area: 42815.3 A^2
 type # % score score/A^2 x 1000
 C wide_contact 318 0.0% 3.3 0.08
 C close_contact 284 0.0% 12.4 0.29
 C small_overlap 105 0.0% -4.7 -0.11
 C bad_overlap 3 0.0% -0.4 -0.01
 C H-bond 11 0.0% 0.1 0.00
 N wide_contact 5 0.0% 0.0 0.00
 N close_contact 12 0.0% 0.6 0.01
 N small_overlap 5 0.0% -0.1 -0.00
 O wide_contact 115 0.0% 1.2 0.03
 O close_contact 113 0.0% 4.9 0.11
 O small_overlap 30 0.0% -0.9 -0.02
 O H-bond 116 0.0% 2.7 0.06

 tot contact: 847 0.1% 22.5 0.52
 tot overlap: 143 0.0% -6.2 -0.14
 tot H-bond: 127 0.0% 2.8 0.06

 grand tot: 1117 0.2% 19.1 0.45
 total probescore 37.4

contact surface area: 69.8 A^2

Schema	1:		Sample	output	from	the	phenix.probe	command	

Figure	6:		Probescore	contacts	for	the	SPD	(pink)	in	the	
1pot	 SPD-binding	 protein,	 bound	 mainly	 by	 pairs	 of	
aromatics.	

	

	 14	

Short Communications

Computational	Crystallography	Newsletter	(2021).	12,	9–14	

9

two	near-orthogonal	pairs	of	 aromatics,	whose	extensive	van	der	Waals	 contacts	are	a	much	
more	dominant	component	of	the	probescore	than	the	H-bonds	(Figure	6).	This	example	serves	
as	a	reminder	that	vdW	contacts	should	indeed	be	taken	into	account	as	well	as	clashes	and	H-
bonds.		
At	present,	phenix.probe	(or	a	locally	installed	copy	of	Probe)	cannot	read	mmCIF	files	directly,	
but	 can	 read	 hybrid36	 PDB	 files.	 So	 for	 very	 large	 files	 like	 7k00,	 one	 should	 first	 run	
phenix.cif_as_pdb.	Our	rewrite	of	Probe	now	in	progress	will	fix	that	problem.		
References:	
Chen	VB,	Davis	IW,	Richardson	DC	(2009)	KiNG	(Kinemage	Next	Generation),	a	versatile	interactive	molecular	and	
scientific	visualization	program,	Protein	Sci	18:	2403-2409		
Richardson	J,	Prisant	M,	Williams	C,	Deis	L,	Videau	L,	Richardson	D	(2017)	Fitting	Tip	#13	-	O-pairs:	The	love-hate	
relationship	of	carboxyl	oxygens,	Comp	Cryst	Newsletter	8:	2-5	(http://phenix-
online.org/newsletter/CCN_2017_01.pdf)	
Sugiyama	S,	Matsuo	Y,	Maenaka	K,	Vassylyev	DG,	Matsushima	K,	Kashiwagi	K,	Igarashi	K,	Morikawa	K	(1996)	The	
1.8Å	X-ray	structure	of	the	E	coli	POTD	protein	complexed	with	spermidine,	and	the	mechanism	of	polyamine	
binding,	Protein	Sci	5:	1984-1990	[1pot]	
Watson	ZL,	Ward	FR,	Meheust	R,	Ad	O,	Schepartz	A,	Banfield	JF,	Cate	JH	(2020)	Structure	of	the	bacterial	ribosome	
at	2	Ångstrom	resolution,	Elife	doi:10.7554/eLife.60482	[7k00]	
Word	JM,	Lovell	SC,	LaBean	TH,	Zalis	ME,	Presley	BK,	Richardson	JS,	Richardson	DC	(1999)	"Visualizing	and	
Quantitating	Molecular	Goodness-of-Fit:	Small-probe	Contact	Dots	with	Explicit	Hydrogen	Atoms",	J	Mol	Biol	285:	
1711-1733	

	

	 15	Computational	Crystallography	Newsletter	(2021).	12,	15-25	

ARTICLES

1

HKLviewer,	a	new	3D	reflection	data	viewer	for	CCTBX	
Robert	D.	Oeffnera,	Airlie	J.	McCoya,	Duncan	H.	Stockwella,	Massimo	D.	Sammitoa,	Kaushik	S.	
Hattia,b,	Tristan	I.	Crolla	and	Randy	J.	Reada	

aDepartment of Haematology, Cambridge Institute for Medical Research, University of
Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
bDrug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life
Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom

Correspondence e-mail: rdo20@cam.ac.uk

The	HKLviewer	 is	 a	 reflection	 data	 viewer	 for	 X-ray	 crystallography.	 It	 is	 now	 part	 of	 the	
CCTBX	[1]	library	and	available	in	software	derived	therefrom.	

2

Introduction	
As	 computational	 methods	 for	
crystallography	 are	 becoming	 ever	 more	
sophisticated	 a	 greater	 part	 of	 structure	
solving	 now	 concerns	 data	 analysis	 as	 to	
recognise	 deviations	 of	 reflection	 intensities	
from	 the	 Wilson	 distribution	 that	 underpins	
the	 theory	 for	 maximum	 likelihood	 methods	
used	 for	 structure	 solving.	 There	 are	
automated	 methods	 for	 handling	 most	 of	
these.	 However,	 occasionally	 pathologies	 in	
some	 data	 sets	 escape	 detection,	 leading	 to	
difficulties	 in	 solving	 the	 structure.	 The	
HKLviewer	 can	 help	 the	 visual	 detection	 of	
such	 cases.	 Other	 reflection	 data	 viewer	
programs	 exist,	 such	 as	 the	Reflection	 data	
viewer	[2]	or	ViewHKL	[3]	or	the	StarANISO	
server	[4].	But	they	do	not	address	our	needs,	
one	 of	 which	 is	 that	 it	 must	 be	 possible	 to	
integrate	the	reflection	data	viewer	into	a	GUI,	
phaser.voyager	 [5]	 that	 leverages	 new	
features	 in	 the	 Phasertng	 [6].	 Both	 are	
currently	 under	 development	 and	 have	 not	
yet	been	released.	

Implementation	

HKLviewer	Qt5	GUI	
The	 built-in	 GUI	 of	 the	HKLviewer	 uses	 Qt5	
[7]	 and	 is	 written	 in	 Python	 using	 PySide2	
modules.	 Qt5	 is	 a	 cross	 platform	 GUI	
architecture	 for	MacOS,	 Linux	 and	Windows.	

3

It	 is	 well	 supported	 and	 robust	 and	
encourages	a	clean	programming	style.	

ZMQsocket	
A	 ZMQsocket	 [8]	 is	 used	 for	 communication	
between	 the	 HKLviewer	 Qt5	 GUI	 and	
cctbx.python.	 The	 ZMQsocket	 library	
implements	 a	 bidirectional	 messaging	
protocol	 and	 has	 been	 ported	 to	 several	
programming	languages.	Since	the	HKLviewer	
Qt5	 GUI	 and	 the	 cctbx.python	 are	 running	 as	
separate	 processes	 this	 provides	 an	 extra	
level	 of	 protection	 against	 exceptions	 in	 the	
unlikely	 event	 should	 one	 emerge	 from	 the	
cctbx.python	 process.	 It	 also	 makes	 the	 GUI	
appear	 responsive	 even	 when	 cctbx.python	
remains	 busy	 loading	 a	 file	 or	 calculating	
cartesian	 coordinates.	 Thus	 although	 not	
strictly	 necessary	 there	 are	 intrinsic	 benefits	
of	 using	 a	 network	 socket	 for	 calling	 the	
cctbx.python	 process	 in	 flexibility	 and	
improvements	 in	 the	 design.	 All	 messages	
from	 the	 HKLviewer	 Qt5	 GUI	 to	 cctbx.python	
are	 formatted	 as	 PHIL	 [1]	 strings.	 The	
cctbx.python	 process	 then	 relays	 information	
back	as	strings	that	are	organised	typically	as	
python	 dictionary	 data	 structures	 containing	
built-in	python	data	types.	

cctbx.python	scripting	
The	 cctbx.python	 process	 executes	 functions	
in	 the	 file	 cmdlineframes.py.	 It	 reuses	 a	
substantial	part	of	 the	code	of	 the	Reflection	

	

	 16	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

4

data	 viewer.	 This	 code	 leverages	 the	 API	 in	
CCTBX	 for	 handling	 crystallographic	 data	
such	 as	 matching	 different	 miller	 arrays	 to	
one	 another	 or	 converting	 coordinates	 from	
reciprocal	 space	 into	 cartesian	 coordinates.	
When	 expanding	 reflections	 to	 P1	 and	
generating	 Friedel	 mates,	 the	 rotation	
matrices	 are	 converted	 from	 real	 space	
fractional	 coordinates	 to	 cartesian	
coordinates	 before	 submitting	 them	 to	 the	
browser	 running	 our	 JavaScript	 code.	 Inside	
the	browser	the	matrices	are	used	by	WebGL	
API	 functions,	 like	 r.applyMatrix3(…),	 for	
defining	 new	 reflections	 when	 doing	 the	
crystallographic	expansion.		

WebGL	
Due	 to	uncertainty	of	support	 for	OpenGL	on	
macOS	[9]	the	HKLviewer	uses	WebGL	for	3D	
visualisation.	WebGL	 is	 an	 industry	 standard	
for	 3D	 hardware	 supported	 graphics	
rendering	in	modern	web	browsers.	There	are	
many	 JavaScript	 libraries	 that	 abstract	 the	
intricate	 coding	details	of	WebGL	 into	robust	
higher-level	 JavaScript	 libraries.	 The	 NGL	
viewer	 [10]	 is	 a	predecessor	 to	MOL*	 [11].	 It	
is	 based	 on	 other	 JavaScript	 libraries	 that	
implements	WebGL.	Unlike	MOL*	which	is	still	
undergoing	 development	 NGL	 is	 well-
documented	 and	 mostly	 undergoing	
maintenance.	Its	API	therefore	remains	stable.	
Importantly	 NGL	 is	 provided	 as	 small	 (less	
than	 2Mb)	 static	 JavaScript	 library	 file	 that	
can	 be	 distributed	 in	 programs	 written	 by	
other	 developers,	 subject	 to	 the	 MIT	 license.	
This	 is	 what	 is	 used	 in	 the	HKLviewer.	 The	
NGL	 API	 provides	 functions	 for	 drawing	
graphics	 primitives	 such	 as	 spheres,	 arrows	
and	other	shapes	in	a	web	browser.	This	is	the	
only	part	of	the	API	that	the	HKLviewer	uses.	
No	molecules	are	drawn	with	our	use	of	NGL.	

Websocket	
The	 websocketInvalid	 source	 specified.	
protocol	is	a	bidirectional	messaging	protocol	
used	 for	 communication	 between	 the	 web	
browser	 and	 cctbx.python.	 It	 supports	 binary	

5

data	 transfer	 that	 is	 useful	 for	 transmitting	
images	 from	 the	 browser.	 In	 the	 file	
cmdlineframes.py,	 the	websockets	 module	 is	
used	for	setting	up	a	server.	This	server	sends	
messages	as	plain	strings	to	a	websocket	client	
listening	on	a	specified	port	on	localhost.	The	
client	 is	 instantiated	 in	 our	 JavaScript	 file,	
HKLJavaScripts.js,	 that	 runs	 in	 a	 web	
browser.	The	websocket	 protocol	 is	built	 into	
modern	web	browsers	and	requires	no	special	
libraries,	though	occasionally	security	settings	
may	have	to	be	relaxed	to	permit	the	client	to	
connect.	The	inbound	messages	are	picked	up	
by	 the	websocket	 client.	 An	 event	 handler	 in	
HKLJavaScripts.js	 causes	 the	web	 browser	
to	 react	 to	 the	 incoming	 messages.	 The	
messages	 consist	 of	 coordinates	 of	 the	
reflection	 spheres,	 their	 RGB	 colour	 values,	
their	 radii,	 tooltips,	 requested	 orientations	
and	other	messages.	Conversely	the	JavaScript	
code	 will	 send	 back	 messages	 either	 on	
request	 or	 automatically	 to	 the	 websocket	
server	 running	 in	 cctbx.python.	 These	 are	
messages	such	as	the	orientation	and	location	
of	the	coordinate	system,	any	reflection	that	is	
clicked	and	other	messages.	

Architecture	
The	architecture	of	the	HKLviewer	is	outlined	
in	 Figure	 1.	 The	 HKLviewer	 Qt5	 GUI	 starts	
cctbx.python	as	a	subprocess	and	runs	the	file,	
cmdlineframes.py.	 One	 of	 the	 first	
messages	 sent	 from	 cctbx.python	 to	 the	
HKLviewer	Qt5	GUI	is	the	path	of	the	HTML	file	
the	web	 browser	 should	 load.	 The	HTML	 file	
lives	 as	 a	 temporary	 file	 on	 the	 user’s	
computer	 for	 the	 lifetime	 of	 the	 session.	 Its	
only	 contents	 are	 references	 to	 NGL.js	 and	
the	 HKLJavaScripts.js	 files.	 The	HKLviewer	
Qt5	GUI	also	contains	a	web	browser	available	
in	Qt5.	As	soon	as	the	HTML	file	is	loaded	into	
the	 browser	 functions	 in	HKLJavaScripts.js	
will	 attempt	 to	 connect	 to	 the	 websocket	
server	running	in	the	cctbx.python	process.		

It	 is	 possible	 to	 replace	 components	 in	 this	
architecture.	 The	 process	 running	

	

	 17	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

6

cmdlineframes.py	can	be	accomplished	by	an	
alternative	process	running	cctbx.python.	The	
HKLviewer	 Qt5	 GUI	 can	 be	 replaced	 with	 an	
alternative	program	provided	by	a	developer	
running	 ZMQsocket	 for	 communication	 with	
cctbx.python.	 The	 web	 browser	 program	 can	
also	be	set	to	either	an	alternative	browser	or	
the	 OS	 system	 default	 web	 browser.	 This	
yields	 several	 possibilities	 for	 incorporating	
HKLviewer	 into	 other	 programs.	 For	
phaser.voyager	the	approach	will	likely	be	to	
use	 a	 customised	 alternative	 cctbx.python	
script	 for	 executing	 functions	 in	
cmdlineframes.py	 as	 well	 as	 providing	 an	
alternative	 web	 browser	 for	 display	 of	 the	
reflections.	

7

Usage	

Standalone	GUI	
The	primary	way	to	invoke	the	HKLviewer	is	
using	 it	 from	 the	 built-in	 GUI.	 It	 can	 be	
launched	with	a	click	on	its	program	icon	in	a	
file	browser.	Alternatively,	on	a	command	line	
with	 the	 CCTBX	 environment	 enabled	 type	
cctbx.HKLviewer,	 optionally	 adding	 a	
reflection	 file	 name	 as	 an	 input	 parameter.	
HKLviewer	 reads	 most	 standard	 reflection	
file	formats,	like	MTZ,	HKL,	SCA	and	CIF.	It	can	
save	 files	 as	 either	 CIF	 or	 MTZ.	 Some	
limitations	 exist	 with	 unmerged	 data.	 On	
invocation	the	HKLviewer	Qt5	GUI	as	pictured	
in	Figure	 2	will	 appear.	 A	particular	 data	 set	
in	a	reflection	file	can	be	displayed	by	double	

Figure	1:	Architecture	of	the	HKLviewer		

cctbx.python running
cmdlineframes.py

HKLviewer Qt5 GUI
Qt5 web browser

running
HKLJavaScripts.js
and a websocket

client

Localhost network

PHIL string commands

Tables, PHIL parameters, etc.

Lo
ca

lho
st

ne
tw

or
k

Orie
nt

ati
on

, e
tc.

Co
or

din
ate

s,
co

lou
rs,

 et
c

Alternative
cctbx.python script
running functions

defined in
cmdlineframes.py

Alternative
program with
a ZMQsocket

Alternative web
browser running
HKLJavaScripts.js
and a websocket

client

ZMQsocket

ZMQsocket Websocket
server

GUI controls

	

	 18	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

8

clicking	the	row	with	the	corresponding	label	
in	 the	 upper	 left	 table.	 That	 table	 contains	 a	
summary	of	properties	of	each	data	set	in	the	
reflection	file.	When	a	data	set	is	displayed	the	
tabs	 labelled	 “Expansion”,	 “Slicing”,	 “Sizing”,	
“Binning”	 and	 “Vectors”	 become	 enabled.	 In	
the	 view	 of	 reflections,	 a	 tooltip	 will	 appear	
when	the	mouse	is	hovering	over	or	clicking	a	
reflection.		

The	HKLviewer	Qt5	GUI	consists	of	a	left-hand	
panel	and	a	right-hand	reflection	viewer	area.		

Expansion	tab	
On	 the	 “Expansion”	 tab	 the	 displayed	
reflections	 can	be	expanded	 to	P1,	 to	 include	
their	Friedel	mates	(for	non-anomalous	data)	
or	both.	In	the	Reflection	data	viewer	this	is	
done	 in	 python.	 This	 is	 computationally	
expensive	 and	 often	 leads	 to	 the	 Reflection	
data	 viewer	 becoming	 unresponsive	 simply	
due	 to	 the	 shear	 number	 of	 reflections	 to	

9

display.	 Our	 implementation	 benefits	 from	
computing	this	expansion	in	JavaScript	within	
the	 memory	 space	 of	 WebGL.	 This	 avoids	
expensive	 transfer	 of	 data	 from	 CPU	 bound	
memory	to	GPU	bound	memory.	As	a	result,	a	
complete	 expansion	 of	 a	 data	 set	 in	 the	
HKLviewer	typically	takes	just	a	few	seconds	
for	 most	 data	 sets.	 For	 instance,	 expanding	
the	 data	 set	 with	 PDB	 code	 2ASC	 that	 has	
cubic	symmetry	takes	about	1.5	seconds	on	an	
Intel	 i7	multicore	 PC	 and	 uses	 about	 500Mb	
memory.	 Doing	 this	 expansion	 in	 the	
Reflection	 data	 viewer	 made	 the	 program	
grind	to	a	halt	using	memory	in	excess	of	5-10	
Gb.	

As	 in	 the	 Reflection	 data	 viewer,	 we	 also	
provide	 check	 boxes	 allowing	 viewing	
systematic	absences	or	missing	 reflections	as	
well	 as	 the	 ability	 to	 reduce	 the	 space	group	
symmetry	to	a	subgroup.		

Figure	2:	The	HKLviewer	loaded	with	a	tutorial	data	set.	

	

	 19	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

10

Slicing	tab	
On	 the	 “Slicing”	 tab	 it	 is	 possible	 to	 view	 a	
slice	 of	 reflection	 either	 by	 imposing	 a	 clip	
plane	within	 the	view	area	of	 the	browser	or	
as	 is	 done	 in	 Reflection	 data	 viewer	 by	
drawing	 only	 a	 single	 selected	 plane	 of	
reflections.	 The	 first	 method	 allows	 for	
viewing	 arbitrary	 slices	 of	 the	 sphere	 of	
reflections	 at	 varying	 thickness.	 Due	 to	
implementation	limitations	of	the	NGL	library	
the	 clip	 plane	 remains	 fixed	 parallel	 to	 the	
screen.	

Sizing	tab	
On	 the	 “Sizing”	 tab	 the	 user	 can	 resize	 the	
spheres	 used	 for	 drawing	 each	 reflection.	
Reflections	 can	 be	 displayed	 either	
independent	 of	 their	 data	 values	 or	 as	 a	
monotone	 function	 of	 the	 data	 values.	 In	 our	
implementation	 the	 radius	 of	 a	 reflection	
sphere	 is	 a	 power	 function	 of	 its	 data	 value	
where	the	user	can	select	the	power	factor	to	
be	used;	

radius = value!,	where	0 ≤ p.	

With	 p = 1	 the	 sizes	 of	 the	 reflections	 are	
directly	proportional	to	their	data	values.	This	
may	 be	 unhelpful	 if	 illustrating	 intensities	or	
amplitudes	 where	 there	 will	 be	 orders	 of	
magnitude	 difference	 between	 the	 sparse	
number	of	very	strong	reflections	and	the	vast	
majority	 of	 more	 moderate	 or	 weaker	
reflections;	 only	 the	 strongest	 reflections	
would	be	visible.	Conversely,	by	setting	p = 0	
all	 reflections	 will	 be	 shown	 with	 the	 same	
size.		

It	 is	 also	 possible	 to	 use	 an	 automatically	
computed	 value	 for	p	 that	 is	 defined	 so	 that	
the	 reflection	with	 the	 smallest	 data	 value	 is	
only	ten	times	smaller	than	the	reflection	with	
the	 largest	 data	 value.	 To	 do	 this	 leave	 the	
“User	 defined	 power	 scaling”	 check	 box	
unticked.		

Binning	tab	
On	the	“Binning”	tab	a	dataset	can	be	divided	
into	one	or	more	bins	according	to	resolution	

11

or	 values	 in	 another	 dataset	 from	 the	 same	
file.	 By	 entering	 a	 number	 greater	 than	 1	 in	
the	 “Number	 of	 bins”	 spin	 box	 control	 new	
bins	will	be	created.	The	default	 is	the	put	an	
equal	 number	 of	 reflections	 in	 each	 bin	 and	
compute	 the	bin	 thresholds	accordingly.	This	
can	 be	 overridden	 manually	 by	 entering	 an	
explicit	bin	threshold	in	the	“lower	bin	value”	
column	for	a	selected	bin.	The	produced	new	
set	 of	 bins	may	 not	match	 the	 requested	 bin	
thresholds	 or	 number	 of	 bins	 if	 one	 or	more	
bins	are	empty.	The	number	of	bins	is	limited	
to	 40	 for	 performance	 reasons.	 It	 is	 also	
possible	 to	 bin	 data	 for	 singletons	 in	
anomalous	data,	 giving	one	bin	 for	data	with	
Friedel	 mates	 and	 one	 each	 for	 lone	
reflections	with	either	the	positive	or	negative	
hand	mate	missing.	

It	is	also	possible	to	adjust	the	transparency	of	
the	reflections	in	a	particular	bin	by	entering	a	
number	 between	 0	 and	 1	 in	 the	 opacity	
column	 of	 that	 bin.	 Reflections	 with	 opacity	
values	 less	 than	 0.3	 will	 not	 react	 to	 mouse	
hovering	 or	 clicking	 activity.	 Due	 to	
implementation	 issues	 of	 3D	 graphics	 there	
will	 often	 be	 border	 and	 shading	 artifacts	
when	viewing	reflections	half	transparent.	

Vectors	tab	
The	 “Vectors”	 tab	 provides	 controls	 for	
showing	 some	 vectors	 with	 origin	 (0,0,0).	
These	 include	 vectors	 illustrating	 rotation	
axis	 for	 the	 symmetry	 operators	 within	 the	
space	 group	 for	 the	 currently	 displayed	 data	
set.	 Vectors	 specified	 by	 rotation	 operators	
are	 labelled	 2-fold,	 3-fold	 and	 so	 on.	 The	
labels	 and	 the	 associated	 rotation	 operator	
are	listed	in	the	table	on	the	“Vectors”	tab.	The	
vectors	 for	 rotation	 operators	 part	 of	 the	
spacegroup	 are	 always	 listed	 whenever	 a	
dataset	 is	 loaded.	 The	 displayed	 length	 of	
rotation	operator	axes	 is	 set	 to	be	 somewhat	
larger	than	the	sphere	of	displayed	reflections	
and	bears	no	relation	to	the	rotation	operator.		

In	addition,	 if	 the	reflection	 file	 is	of	 the	MTZ	
type	and	the	file	header	contains	 information	

	

	 20	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

12

about	 a	 translational	 non-crystallographic	
symmetry	 (tNCS)	 vector	 (obtained	 from	
Phasertng)	this	vector	will	be	listed	as	well	in	
the	table.	Its	real	space	fractional	coordinates	
will	be	present	in	the	“as	abc”	column.		

It	 is	 also	 possible	 to	 enter	 a	 user-defined	
vector.	This	can	either	be	a	rotation	operator,	
a	 vector	 in	 reciprocal	 space	 or	 a	 real	 space	
vector	in	fractional	coordinates.	In	addition,	it	
is	 possible	 to	 rotate	 reflections	 around	 a	
vector	or	 to	orient	 the	 reflections	 so	that	 the	
displayed	 vector	 is	 normal	 or	 parallel	 to	 the	
screen.	 This	 is	 useful	 for	 visual	 inspection	 of	
data	that	possess	tNCS	or	 twin	 laws.	The	real	
space	and	reciprocal	space	unit	cells	can	also	
be	displayed.	

Standard	output	
Below	the	five	tabs	mentioned	above	is	a	text	
field	 for	 standard	 output	 emitted	 by	 the	
program.	 Information	 about	 the	 files	 loaded	
as	 well	 as	 warnings	 or	 error	 message	 may	
appear	there.	

Context	menu	
Figure	3	shows	the	context	menu	that	appears	
when	 right-clicking	 a	 row	 in	 the	 upper	 left	
table.	If	more	than	one	row	is	highlighted	the	
last	 item	of	 the	context	menu	will	provide	an	
option	to	show	a	table	of	those	data.	

Selecting	the	“Show	a	table”	item	will	display	
a	 window	 with	 tabulated	 data	 of	 these	

13

reflections.	 The	 reflections	 remain	 unaltered	
throughout	the	session	and	will	not	under	go	
crystallographic	expansion	if	requested.			

If	a	reflection	in	the	table	in	Figure	4	is	double	
clicked	the	viewer	will	zoom	in	on	it	and	put	a	
red	 wireframe	 around	 it.	 Likewise,	 right-
clicking	 a	 reflection	 in	 the	 viewer	 will	
highlight	the	row(s)	in	the	table	with	the	same	
hkl	index	as	the	reflection.	

Creating	a	new	set	of	reflection	data	
A	 new	 set	 of	 reflection	 data	 can	 be	 created	
based	on	one	or	two	existing	sets	of	reflection	
data.	Right	click	on	a	desired	set	of	reflections	
in	the	upper	left	table.	From	the	context	menu	
in	Figure	3	click	on	the	 item	“Make	new	data	
from	this	data…”.	The	dialog	in	Figure	5	opens	
up	 with	 a	 text	 field	 and	 a	 drop	 down	 list	 of	
available	 data	 set.	 This	 allows	 the	 user	 to	
quickly	 create	 a	 new	 dataset	 with	 features	
that	may	be	of	interest.	

Colour	mapping	
In	the	Reflection	data	viewer	there	are	only	
a	 few	 colour	 schemes	 available.	We	 chose	 to	
make	 available	 all	 colour	 gradient	 mapping	
schemes	 present	 in	 the	 MatPlotLib	 module,	
which	is	included	with	the	CCTBX.	To	select	a	

Figure	3:	The	context	menu	shown	when	right-clicking	
several	highlighted	rows	representing	datasets.	

Figure	4:	Tabulated	Reflection	Data	window	with	a	
highlighted	reflection	in	the	viewer	

	

	 21	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

14

different	 colour	 mapping	 the	 user	 can	 click	
the	upper	left	colour	chart	in	the	viewer	area	
and	the	dialog	in	Figure	6	will	appear.	

A	new	colour	mapping	is	chosen	with	a	single	
mouse	click	on	the	desired	colour	scheme.	As	
discussed	 in	 relation	 to	 the	 power	 scaling	 of	
the	 radii	 of	 reflection	 spheres	 it	 may	 be	
difficult	 to	 discern	 any	 features	 from	 the	
colour	schemes	if	the	values	vary	over	orders	
of	 magnitude.	 Therefore,	 we	 have	 also	
implemented	 a	 mapping	 of	 the	 colour	
gradient	with	a	power	factor	with	1	being	the	
default.	 Values	 ranging	 from	 0.15	 and	 2.59	
were	 found	 to	 be	 sensible	 values	 for	 the	
majority	of	use	cases.		

Circular	rainbow	for	phases	of	map	coefficients	
When	displaying	a	dataset	of	map	coefficients,	
representing	 amplitudes	 and	 phases,	 the	
HKLviewer	colours	the	reflections	so	that	the	
colour	 is	 a	 linear	 function	of	 the	phase	value	
within	 the	 interval	 [0°,	 360°].	 In	 this	 case	 it	
makes	 sense	 to	 choose	 colour	gradient	maps	
from	MatPlotLib	 which	 are	 circular,	 such	 as	
gist_rainbow	 or	 hsv	 where	 the	 starting	
colour	 is	 the	 same	as	 the	 final	 colour.	This	 is	
then	mapped	onto	the	interval	of	[0°,	360°].	A	
map	 coefficient	 is	 then	 displayed	 with	 the	
colour	 corresponding	 to	 its	 phase	 value.	 For	
map	 coefficients,	 the	 “Power	 factor	 for	 map	
scaling”	has	no	effect.		

If	 the	reflection	file	contains	a	 figure	of	merit	
(FOM)	dataset	in	addition	to	map	coefficients	
it	 is	 also	 possible	 to	display	map	coefficients	
with	 colour	 saturation	 as	 a	 function	 of	 FOM	

15

values.	 A	 FOM	 value	 of	 1	 or	 0	 causes	 full	
colour	 saturation	 or	 no	 colour	 saturation,	
respectively.	This	feature	is	available	from	the	
context	menu	as	 in	Figure	7.	Here	one	would	
select	 the	 item	 labelled	 “Display	 FC,PHIC	 +	
FOM”.	

A	 future	 version	 of	 HKLviewer	 may	
implement	 this	 feature	 for	 data	 files	
containing	 Hendrickson-Lattman	 coefficients.	
An	 example	 of	 visualising	map	 coefficients	 is	
given	in	Figure	8.	

Persistence	
The	 layout	 of	 the	 GUI	 as	well	 as	 some	 other	
properties	 such	 as	 font	 size	 persist	 across	
sessions.	 The	 GUI	 layout	 can	 be	 adjusted	 by	
tugging	 the	 borders	 between	 the	 four	

Figure	 5:	 The	 “Create	 New	 Reflection	 data”	 dialog	 used	
for	creating	I/SigI	data.	

Figure	 6:	 The	 Colour	 Gradient	 Map	 dialog	 for	 selecting	
different	colour	mapping.	

Figure	 7:	 Context	 menu	 when	 FOM	 data	 is	 present	
together	with	map	coefficients.	

	

	 22	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

	

16

components	to	the	left	of	the	view	area	as	well	
as	 the	vertical	border	between	the	view	area	
and	the	four	components	on	the	left.	

Examples	

Inspecting	tNCS	modulation	in	a	dataset	
In	Figure	9	 is	 an	example	of	 tNCS	 in	the	data	
set	(PDB	id:	6C5F)	found	by	xtriage.	The	tNCS	
vector	was	found	to	be	(0.333,	-0.334,	0.040).	
With	 a	 Patterson	 peak	 height	 of	 19.483%	 of	
the	 origin	 peak	 the	 tNCS	 modulation	 is	
moderate.	 But	 it	 is	 nevertheless	 visible	 with	
the	settings	used	here	for	the	HKLviewer.	

In	 Figure	 9,	 the	 “FP,SIGFP”	 reflections	 have	
been	expand	to	P1	and	Friedel	mates.	On	the	
“Binning”	 tab,	8	bins	were	 specified	and	data	
binned	according	to	“FP,SIGFP”.	The	few	large	
data	values	in	amplitude	or	intensity	data	set	
are	 likely	 to	 obscure	 subtle	 features	 such	 as	
tNCS	modulation.	In	Error!	Reference	source	
not	 found.,	 we	 therefore	 deselected	 the	 last	

17

bin	 of	 data	 values	 larger	 than	 900.	 This	
number	was	 entered	 explicitly.	 That	 and	 the	
number	of	bins	was	found	by	trial	and	error.	

On	 the	 “Sizing”	 tab,	we	 have	 chosen	a	power	
factor	 of	 two	 to	 roughly	 reproduce	 the	
strength	 of	 recorded	 intensities	 (not	 present	
in	 the	 file).	 For	 this	data	 set	 a	 scale	 factor	 of	
two	makes	most	of	reflections	visible	without	
expanding	 into	 space	 of	 neighbouring	
reflections.	 Rotating	 the	 reflections	 around	
the	 xtriageTNCS	 vector	 reveals	 the	 weak	
modulation	 in	 the	 data	 values	 as	 ripples	
perpendicular	to	the	xtriageTNCS	vector.	

Inspecting	a	twin	law	for	a	dataset	
The	 Phenix	 tutorial	 with	 the	 file,	 porin.mtz,	
illustrates	 twinning.	 In	 Error!	 Reference	
source	 not	 found.,	 the	 data	 set	 “F-obs,SIGF-
obs”	is	displayed	in	the	viewer.	The	reflections	
have	been	expanded	to	P1	and	Friedel	mates.	
The	 user	 defined	 power	 scaling	 was	 set	 to	
one.	 The	 twin	 operator,	 (-h-k,k,-l),	 has	 been	

Figure	8:	Inspecting	a	map	coefficient	together	with	a	FOM	value	in	a	dataset	containing	both.	

	

	 23	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

18

entered	 on	 the	 “Vectors”	 tab	 and	 oriented	
normal	to	the	screen.	A	slice	with	a	clip	plane	
was	made	at	a	distance	of	five	from	the	origin	
and	a	width	of	1.2.	Right-clicking	a	reflection,	
say	 the	 one	at	 (13,5,8)	 invoke	 tooltips	 at	 the	
reflection	itself	as	well	as	at	its	twin.	The	data	
value	 of	 the	 reflection	 is	 simultaneously	
highlighted	in	the	“Tabulated	Reflection	Data”	
window.	

19

Tutorials	and	further	documentation	
For	 tutorial	 examples	 on	 using	 HKLviewer	
and	 documentation	 on	 using	 it	 from	 python	
script	or	through	a	ZMQsocket	we	refer	to	the	
online	 documentation	 on	
http://cci.lbl.gov/docs/cctbx/doc_hklviewer/.	

Figure	9:	Displaying	tNCS	modulation	in	amplitude	data.	

Figure	10:	Adjusting	size	of	displayed	reflections	and	hiding	the	strongest	reflections	from	view	is	helpful	for	revealing	
subtle	features	in	the	diffraction	pattern	like	tNCS.	

	

	 24	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

	

20

Works	Cited	
[1]		 R.	W.	Große-Kunstleve,	“Algorithms	for	deriving	crystallographic	space-group	information,”	Acta	Cryst.,	pp.	

A55,	383-395,	1999.		

[2]		 N.	Echols	and	P.	D.	Adams,	“A	lightweight,	versatile	framework	for	visualizing	reciprocal-space	data,”	
Computational	Crystallography	Newsletter,	vol.	2,	pp.	88-92,	2011.		

[3]		 P.	Evans	and	E.	Krissinel,	“ViewHKL,”	2011.	[Online].	Available:	
http://legacy.ccp4.ac.uk/newsletters/newsletter48/articles/ViewHKL/viewhkl.html.	

[4]		 I.	J.	Tickle,	C.	Flensburg,	P.	Keller,	W.	Paciorek,	A.	Sharff,	C.	Vonrhein	and	G.	Bricogne,	“STARANISO,”	
Cambridge,	United	Kingdom:	Global	Phasing	Ltd.,	2018.	[Online].	Available:	
http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi.	

[5]		 M.	D.	Sammito,	Phaser.voyager,	Manuscript	in	preparation.		

[6]		 A.	J.	McCoy,	D.	H.	Stockwell,	M.	D.	Sammito,	R.	D.	Oeffner,	K.	S.	Hatti,	T.	I.	Croll	and	R.	J.	Read,	“Phasertng:	
directed	acyclic	graphs	for	crystallographic	phasing,”	Acta	Crystallographica	Section	D,	vol.	77,	pp.	1-10,	2021.		

[7]		 The	Qt	company,	“Qt	documentation,”	[Online].	Available:	https://doc.qt.io/.	

Figure	 11:	 Reflection	 and	 its	 twin	 highlighted	 by	 tooltips.	 The	 twin	 axis	 is	 specified	 on	 the	 “Vectors”	 tab	 as	 the	 2-
fold_twin.	

	

	 25	

Articles

Computational	Crystallography	Newsletter	(2021).	12,	15-25	

21

[8]		 “ZeroMQ,”	2020.	[Online].	Available:	https://zeromq.org/.	

[9]		 Wikipedia,	“macOS	Mojave,”	[Online].	Available:	https://en.wikipedia.org/wiki/MacOS_Mojave.	

[10]		A.	S.	Rose,	R.	A.	Bradley,	Y.	Valasatava,	M.	J.	Duarte,	A.	Prlić	and	W.	P.	Rose,	“NGL	viewer:	web-based	molecular	
graphics	for	large	complexes,”	Bioinformatics,	vol.	34,	no.	21,	p.	3755–3758,	2018.		

[11]		D.	Sehnal,	R.	Svobodova,	K.	Berka,	A.	S.	Rose,	S.	K.	Burley,	S.	Velankar	and	J.	Koca,	“High-performance	
macromolecular	data	delivery	and	visualization	for	the	web,”	Acta	Crystallographica	Section	D,	vol.	76,	pp.	
1167-1173,	2020.		

[12]		Wikipedia,	“WebSocket,”	[Online].	Available:	https://en.wikipedia.org/wiki/WebSocket.	

	

	

	

	

	 26	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

1

	Running	CCTBX	and	PyMOL	in	the	same	Jupyter	Notebook	
Blaine	H.M.	Mooersa,b,c	

aDepartment	of	Biochemistry	and	Molecular	Biology,	University	of	Oklahoma	Health	Sciences	Center,	Oklahoma	City,	OK	73104	
bStephenson	Cancer	Center,	University	of	Oklahoma	Health	Sciences	Center,	Oklahoma	City,	OK	73104	
cLaboratory	of	Biomolecular	Structure	and	Function,	University	of	Oklahoma	Health	Sciences	Center,	Oklahoma	City,	OK	73104	

Correspondence	email:	blaine-mooers@ouhsc.edu	

2

Introduction	
The	 Jupyter	 Notebook	 is	 a	 popular	 coding	
platform	(Kluyver	et	al.,	2016).	There	are	9.7	
million	notebooks	 on	GitHub	as	 of	December	
13,	 20201.	 The	 notebooks	 are	 written	 in	
JavaScript	 and	 run	 in	 a	 web	 browser.	 The	
notebook	 is	 a	 front-end	 to	a	kernel	 that	does	
the	computing.	The	default	kernel	is	a	Python	
interpreter.	 Kernels	 for	 scores	 of	 other	
programming	 languages	 are	 available.	 These	
include	 compiled	 programming	 languages.	
For	example,	the	xeus-cling	kernel	uses	a	just-
in-time	 (JIT)	 compiler	 for	 C++	 code	
(https://github.com/jupyter-xeus/xeus-cling).	 As	 a	
result,	 C++	 code	 can	 be	 developed	
interactively	in	a	Jupyter	notebook.	

The	 user	 of	 a	 notebook	 can	 interleave	
explanatory	text,	code,	and	output	in	tables	or	
plots.	 Both	 the	 code	 and	 its	 output	 are	 often	
visible	 in	 the	 browser	 without	 needing	 to	
scroll	 down.	 The	 proximity	 of	 both	 code	 and	
output	 provides	 a	 sensation	 of	 instant	
feedback.	 The	 user	 can	 change	 the	 source	 of	
input	data	or	a	model’s	parameters	and	rerun	
the	 code.	 This	 interactivity	 facilitates	 the	
rapid	 development	 of	 the	 code.	 The	
interleaved	 blocks	 of	 text	 also	 make	 the	
notebooks	 useful	 as	 tutorials.	 Several	
inquiries	 about	 running	 CCTBX	 in	 Jupyter	
Notebooks	 have	 been	 posted	 on	 CCTBX's	
bulletin	board	(Grosse-Kunstleve	et	al.,	2002).	

PyMOL	 is	 also	 accessible	 from	 Jupyter	
through	 a	 recently	 released	 Python	 API	
(Application	Programming	Interface)	(Delano,	
2002).	 This	API	makes	 it	 easier	 to	 interleave	
code	 for	CCTBX	and	PyMOL	 in	one	notebook.	
The	API	also	eliminates	 the	need	 to	open	 the	

3

PyMOL	GUI,	although	the	user	may	still	want	
to	optimize	the	molecular	object's	orientation	
manually	 in	open	GUI	 session	of	PyMOL.	The	
PyMOL's	 Python	 API	 eases	 combining	 code	
and	 output	 from	 CCTBX	 and	 PyMOL	 in	 one	
document.	 PyMOL	 complements	 CCTBX	 by	
providing	 stunning	 images	 of	 molecular	
objects.	For	example,	PyMOL	could	be	used	to	
illustrate	 the	 results	 of	 coordinate	
manipulations	 computed	 with	 CCTBX.	 The	
ability	 to	 run	 both	 PyMOL	 and	 CCTBX	 in	
Jupyter	Notebooks	is	highly	desirable	 if	these	
notebooks	are	used	 for	 literate	programming	
with	CCTBX.	

This	 contribution	 demonstrates	 the	 use	 of	
CCTBX	 and	 PyMOL	 in	 the	 same	 Jupyter	
Notebook.	 We	 provide	 several	 alternate	
protocols	 for	 installing	 Jupyter,	 CCTBX,	 and	
PyMOL.	The	protocols	include	the	installation	
of	 JupyterLab.	 The	 latter	 is	 a	 browser-based	
IDE	 (Integrated	 Development	 Environment)	
for	 editing	 and	 running	 Jupyter	 Notebooks.	
JupyterLab	 has	 an	 extension	 that	 supports	
access	 to	 code	 snippets	 via	 pulldown	menus.	
We	developed	snippet	libraries	for	CCTBX	and	
PyMOL	 for	use	 in	 JupyterLab.	These	 libraries	
are	 easy	 to	 install	 and	 extend.	We	also	 show	
how	 to	 use	 shortcuts	 for	 PyMOL	 from	 the	
script	 pymolshortcuts.py	 in	 Jupyter	
Notebooks	 (Mooers	2020).	Users	 can	use	 the	
shortcuts	 and	 snippets	 together	 to	 enhance	
their	 productivity	 with	 PyMOL.	 Anyone	
interested	 in	using	 Jupyter	 for	computational	
structural	biology	should	be	interested	in	this	
article.	

Methods	
We	 tested	 the	 installation	 protocols	 on	
Ubuntu	 20.04	 LTS,	 Mac	 OS	 10.15.7,	 and	
Windows	 10	 with	 the	 incentive	 and	 open-1https://github.com/parente/nbestimate	

	

	 27	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

5

Results	
In	the	next	section,	we	describe	the	protocols	
for	 installing	 PyMOL,	 CCTBX,	 Jupyter,	 and	
snippet	libraries.	Next,	we	show	how	to	access	
the	 snippets	 in	 JupyterLab.	 Then,	 we	 show	
examples	 of	 using	 CCTBX	 and	 PyMOL	 in	 the	
same	 Jupyter	Notebook.	We	demonstrate	 the	
use	 of	 several	 PyMOL	 shortcuts	 in	 a	 Jupyter	
Notebook.	 The	 snippets	 and	 shortcuts	
improve	 productivity,	 self-directed	 learning,	
and	 documentation	 of	 computational	 work	
when	using	Jupyter.	

Five	 or	 more	 alternative	 approaches	 can	 be	
used	 to	 install	 CCTBX,	 PyMOL,	 and	 Jupyter.	
The	descriptions	of	these	protocols	 take	over	
2000	 words.	 To	 save	 space,	 we	 stored	 the	
protocols	 in	 the	 README.md	 file	
at	https://github.com/MooersLab/jupyterlab
cctbxsnips.	 Several	 protocols	 use	 the	 open-
source	version	of	PyMOL.	Each	protocol	leads	
to	the	ability	to	run	CCTBX	and	PyMOL	in	the	
same	 Jupyter	 Notebook.	 The	 GUI	 of	
JupyterLab	 provides	 pulldown	 menus	 for	
access	 to	 the	 libraries	 of	 Python	 code	
fragments	for	running	CCTBX	and	PyMOL.		

The	examples	 below	 are	 included	 along	with	
several	 others	 in	 a	 Jupyter	 Notebook	 that	 is	
available	at	the	above	repository.	A	static	html	
version	 of	 this	 notebook	 also	 can	 be	
downloaded	 from	 the	GitHub	 site	 by	 clicking	
on	the	file	name,	displaying	the	raw	code,	and	
saving	 the	 file	 without	 the	 appended	 txt	
extension	 added	 by	 the	 browser.	 The	
notebook	also	can	be	viewed	with	the	easy	to	
install	 nteract	 application	 (https://nteract.io).	

4

source	 versions	 of	 PyMOL.	 We	 used	
JupyterLab	 version	 2.2.0	 because	 later	
versions	 of	 JupyterLab	 were	 not	 compatible	
with	 the	 jupyterlab-snippets-multimenus	
extension.		

The	 snippets	 are	 code-fragments	 in	 Python	
script	 files.	 We	 used	 the	 PyMOL	 Python	 API	
directly	or	passed	PyMOL	command	language	
(pml)	 code	 as	 arguments	 to	 the	 pymol	
module’s	 cmd.do()	 method.	 The	 code	 in	 the	
snippets	 contains	 no	 extra	 formatting.	 The	
jupyterlabcctbxsnips	 library	 has	 over	 70	
snippets,	 and	 the	 jupyterlabpymolpysnips	
library	 has	 over	 260	 snippets.	 The	 'plus'	
variants	of	both	 libraries	 include	commented	
lines.	These	lines	contain	a	second	copy	of	the	
code.	 This	 second	 copy	 has	 sites	 to	 be	
considered	for	editing	marked	with	a	 leading	
dollar	 sign	 and	 enclosed	with	 a	 pair	 of	 curly	
braces	to	draw	attention	to	them.	The	markup	
format	 follows	 the	 standard	 format	 used	 for	
tab	 stops	 in	 the	 snippet	 libraries	 for	 the	
Sublime	Text	3	text	editor.	

Users	 can	 download	 the	 libraries	 from	
GitHub.	 Advanced	 users	 may	 not	 need	 the	
plus	 variants	 of	 the	 libraries.	 The	 names	 of	
the	 libraries	 in	 the	 table	 below	 are	 as	 they	
appear	 on	 the	 menu	 toolbar	 in	 JupyterLab.	
The	 URLs	 for	 the	 four	 libraries	 are	 listed	 in	
the	table	below.		

Associated	 GitHub	 Pages	 list	 the	 snippets	 by	
category	
https://mooerslab.github.io/jupyterlabcctbxsnips/	
and	
https://mooerslab.github.io/jupyterlabpymolpysnips/.	

Library	name	 GitHub	repository	

ccbtx	 https://github.com/MooersLab/jupyterlabcctbxsnips,	

cctbx+	 https://github.com/MooersLab/jupyterlabpymolpysnipsplus	

pymol	 https://github.com/MooersLab/jupyterlabpymolpysnips	

pymol+	 https://github.com/MooersLab/jupyterlabpymolpysnipsplus	

	

	

	 28	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

	

Figure	1.	Code	snippets	accessed	from	cascading	menus	in	JupyterLab.	

6

The	 code	 cells	 will	 run	 after	 PyMOL	 and	CCTBX	
and	 the	 required	 kernel	 have	 been	 installed	
following	 the	 instructions	 for	 Jupyter.	
However,	nteract	does	not	deploy	the	snippet	
libraries	reported	here.		

Figure	 1	 shows	 a	 Jupyter	 Notebook	 opened	
JupyterLab	 after	 success	 with	 installing	 the	
software.	The	menu	bar	has	 four	new	menus	
(cctbx,	 cctbx+,	 pymol,	 and	 pymol+)	 listed	
between	 the	 Kernel	 and	Tabs	menus.	
The	cctbx	menu	 leads	 to	 a	 cascade	 of	
submenus.	The	XrayDataPlots	submenu	 leads	
to	a	list	of	several	snippets	files.	

The	 IpIm.py	 snippet	 was	 selected	 by	 left-
clicking	 on	 it	 with	 the	 mouse	 cursor.	 The	
corresponding	 code	 inserts	 into	 the	 active	
notebook	 cell	 (Figure	2).	 The	 code	 is	 run	by	
entering	 shift-enter	 (or	 return).	 The	 output	
appears	below	the	active	cell.	

We	used	the	iotbx	module	of	CCTBX	to	read	a	
mtz	 file	 from	 disk	 into	 a	 Miller	 array	 data	
structure	 (this	 mtz	 file	 can	 be	 downloaded	
from	 the	 data	 folder	 on	 the	 GitHub	 site).	We	
made	 a	 scatterplot	 of	 I(+)	 vs	 I(-)	 with	
Matplotlib	 (Hunter,	 2007).	 The	 anomalous	
signal	 in	 the	 data	 is	 proportional	 to	 the	
deviations	 from	 the	 x=y	 line.	 Reuse	 this	
snippet	 with	 a	 new	 dataset	 by	 editing	 the	
marked	sites.	

7

Figure	 3	demonstrates	 running	 PyMOL	 from	
inside	 a	 Jupyter	 notebook.	
The	cmd.do()	method	 is	 used	 to	 send	 the	
PyMOL	 macro	 language	 (pml)	 commands	 to	
PyMOL.	 This	 method	 takes	 the	 PyMOL	
command	 language	 (pml)	 as	 its	 argument.	
Semicolons	 concatenate	 several	 PyMOL	
commands	 to	 save	 space.	 A	 set	 of	 single	 or	
double	 quotes	 enclose	 the	 concatenated	
commands.	

It	 is	 not	 yet	 possible	 to	 have	 PyMOL's	
interactive	 viewport	 embedded	 in	 a	 Jupyter	
cell.	Instead,	the	nglview	package	can	provide	
an	 interactive	 view	 of	 the	 molecule.	 The	
problem	 with	 this	 approach	 is	 that	 PyMOL	
and	 nglview	 do	 not	 yet	 have	 an	 interface	 to	
pass	 molecular	 objects	 between	 each	 other	
inside	 the	 notebook.	 Instead,	 the	 coordinates	
have	to	be	 loaded	 into	nglview	from	the	disk.	
Nglview	does	have	the	advantage	of	 allowing	
the	 loading	 and	 interactive	 display	 of	
molecular	 dynamics	 trajectories.	 Such	
interactive	 views	 are	 useful	 for	 workshops	
and	lectures.	

However,	 such	 interactivity	 is	 often	 not	
desired	with	preparing	images	for	publication.	
It	is	easy	to	reissue	commands	that	change	the	
molecular	 object's	 orientation	 (e.g.,	 translate,	
rotate,	turn,	orient),	save	an	image,	and	reload	

	

	 29	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

	

Figure	2.	Example	of	snippet	from	the	cctbx	library.	

8

the	 image.	 Often	 only	 three	 to	 five	
iterations	 of	 commands	 to	 reorient	
the	 molecule	 lead	 to	 the	 desire	
orientation.	 Zooming	 in	 and	 out	 is	
accomplished	 by	 translations	 along	
the	z-axis.	Alternately,	the	molecular	
object	 is	 loaded	 into	 PyMOL,	
manually	 oriented	 with	 the	 mouse,	

Figure	3.		Two	snippets	from	the	
pymol	library	and	use	of	the	
pymolshortcut.py	script.	

	

	 30	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

9

and	 the	 get_view	 command	 retrieves	 the	 18	
parameter	 values	 that	 set	 the	 view.	 The	
roundview()	 function	 or	rv	shortcut	 (see	
below)	returns	these	settings	on	a	single	 line	
in	a	more	compact	format	that	is	easier	to	use	
(Mooers,	2020).	

The	cmd	class	has	other	methods	beyond	 the	
do	 method.	 For	 example,	
the	cmd.png()	method	takes	arguments	like	a	
Python	 function.	 Here,	cmd.png()	 saves	to	
disk	 a	 png	 file	 of	 an	 RNA	 duplex.	 The	 Image	
class	 from	IPython	 loads	the	png	 file	 into	the	
notebook	and	displays	it	below	Cell	[2].	

The	 RNA	 duplex	 is	 displayed	 with	 the	 black	
carbon	atom	variant	of	the	ambient	occlusion	
effect,	 which	 is	 not	 available	 in	 PyMOL.	 The	
AOD()	 function	 in	 the	 pymolshortcuts.py	 file	
generates	 this	 effect	
(https://github.com/MooersLab/pymolshortc
uts).	 This	 script	 is	 loaded	 in	 Cell	 [1]	 (Figure	
3)	 with	 the	 run	 command.	 This	 line	 can	 be	
added	to	the	.pymolrc	file	to	load	the	shortcuts	
upon	 starting	 the	 PyMOL	 GUI.	 However,	 the	
pymol	 API	 in	 Jupyter	 starts	 up	 without	
reading	 the	 pymolrc	 file,	 so	 placing	 the	 run	
command	 in	 the	 pymolrc	 will	 not	 load	 the	
shortcuts	into	Jupyter	on	startup.	Instead,	the	
run	command	has	to	be	given	as	an	argument	
to	 the	 cmd.do()	 as	 in	 Cell	 [1].	 The	
importPyMOLandShortcuts.py	 snippet	 inserts	
in	Cell	[1].	This	snippet	is	found	in	the	Jupyter	
submenu	under	the	pymol	menu.	The	path	to	
pymolshortcuts.py	 will	 have	 to	 be	 edited	 in	
either	the	snippet	or	in	the	Jupyter	cell.	Other	
Python	scripts	are	 loaded	 in	PyMOL	with	 the	
same	syntax.		

Entering	 the	 AOD	 shortcut	 at	 the	 PyMOL	
prompt	 in	 the	 GUI	 invokes	 the	 black	 carbon	
atom	 variant	 of	 the	 ambient	 occlusion	 effect.	
On	 line	 2	 of	 Cell[2],	 we	 include	AOD	 with	
another	 pml	 command	 as	 the	 argument	 for	
cmd.do().	The	related	AO	shortcut	 colors	 the	
carbon	 atoms	 light	
grey.	AODBW	and	AOBW	color	 all	 atoms	 in	
grayscale.	PyMOL	lacks	grayscale	coloring,	but	

10

it	 is	 available	 from	 the	pymolshortcuts.py	file.	
Grayscale	 figures	are	often	required	 for	book	
chapters.	 The	rein	shortcut	 runs	
the	reinitialize	command.	 The	U8	shortcut	
fetches	PDB	file	3nd4,	generates	the	biological	
unit,	and	orients	the	molecular	object	with	the	
helical	 axis	 aligned	 along	 the	 view's	 y-axis.	
The	shortcuts	save	time	and	space.	

All	 of	 the	 250+	 shortcuts	
in	pymolshortcuts.py	are	 listed	 below	 Cell	 [1]	
when	the	 script	 is	 loaded.	We	hid	 this	 list	by	
folding	 it.	 The	 folding	 operation	 is	
accomplished	by	left	clicking	on	the	transient	
blue	bar	that	 appears	to	 the	 left	of	 the	active	
cell	 (not	 shown	 in	 Figure	 3).	 Clicking	 on	 the	
three	 dots	 displays	 the	 list	 again.	This	 list	 is	
not	 displayed	 when	 each	 shortcut	 is	 used.	
Instead,	detailed	documentation	for	a	specific	
shortcut	 is	 displayed	 by	 using	 Python’s	 help	
function	 (e.g.,	 help(“AO”)).	 The	
documentation	includes	examples	of	usage	for	
non-expert	Python	users.	The	documentation	
also	 includes	 the	 code	 in	 the	 snippet	 in	 pml	
and	in	Python.	The	pml	code	is	also	displayed	
with	 all	 of	 the	 statements	 concatenated	 on	
one	line	to	ease	pasting	the	commands	at	the	
PyMOL	prompt	 in	 the	PyMOL	GUI.	The	 list	of	
shortcuts	 can	 be	 printed	 again	 elsewhere	 in	
the	notebook	by	entering	cmd.do(“sc”).	Users	
can	find	more	information	about	the	shortcuts	
at	
https://github.com/MooersLab/pymolshortc
uts/	and	in	Mooers	(2020).	

We	 generated	 the	 above	 examples	 inside	 a	
conda	 environment	 that	 used	 that	 same	
Python	 interpreter	 to	 install	 CCTBX	 and	
PyMOL,	 so	 only	 one	 kernel	 is	 needed	 to	 run	
both	 packages.	 There	 is	 no	 need	 to	 switch	
kernels	between	cells,	and	both	packages	can	
be	 accessed	 from	 the	 same	 cell.	 The	 default	
Python	 3	 kernel	 is	 sufficient.	 At	 this	 time,	
molecular	 objects	 cannot	 be	 passed	 directly	
between	 PyMOL	 and	 CCTBX.	 Instead,	
coordinates	 are	 written	 to	 disk	 from	 one	
package	 and	 loaded	 from	 disk	 by	 the	 other	
package.	

	

	 31	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

11

Discussion		
We	draw	attention	to	the	ability	to	run	CCTBX	
and	 PyMOL	 side-by-side	 in	 Jupyter	
Notebooks.	The	user	 can	 interleave	 code	 and	
output	 from	 CCTBX	 and	 PyMOL.	 Code	
snippets	 and	 shortcuts	 described	 above	
enhance	 the	 efficiency	 of	 assembling	 the	
interleaved	 code.	 These	 snippets	 are	
accessible	from	cascading	pulldown	menus	at	
the	top	of	the	JupyterLab	GUI.	The	jupyterlab-
snippet-multimenus	extension	 provides	 this	
access.	 This	 extension	 is	 easy	 to	 install	 and	
use.	 Users	 can	 create	 new	 cascading	 sub-
menus	by	making	new	subfolders.	The	snippet	
files	 require	 no	 special	 formatting.	 The	
PyMOL	 code	 has	 to	 be	 written	 in	 Python	
rather	 than	 the	 PyMOL	 command	 language	
(pml).	We	provide	starter	snippet	libraries	for	
PyMOL	and	CCTBX	that	are	easy	to	install	for	
use	 with	 the	 jupyterlab-snippet-multimenus	
extension.	 Below,	 we	 discuss	 limitations	 on	
the	use	of	snippets	in	Jupyter.	We	also	discuss	
several	 uses	 for	 Jupyter	 Notebooks	 in	
structural	studies.	

Several	extensions	for	JupyterLab	support	the	
use	of	snippets.	All	of	these	extensions	do	not	
support	tab	triggers	and	tab	stops	at	this	time.	
These	 two	 missing	 features	 further	 enhance	
the	 efficiency	 of	 using	 snippets	 and	 are	
normally	 available	 in	 text	 editors	 and	 IDEs.	
We	address	the	lack	of	tab	stops	by	providing	
"+"	 variants	 of	 the	 libraries.	 These	 variants	
have	a	 commented	 out	 copy	 of	 the	 code	 that	
has	 the	 tab	 stops	 marked	 with	 dollar	 signs	
and	 curly	 braces.	 The	 marked	 sites	 draw	
attention	 to	 locations	 in	 the	 snippet	 that	
should	be	considered	for	editing.	These	guides	
compensate	for	the	absence	of	tab	stops	in	the	
snippets.	

The	 Jupyter	 Notebook	 can	 store	 the	 image-
generating	 code	 and	 the	 images	 for	 a	
structure	 project	 in	 a	 single	 document.	
Usually,	many	 images	 fill	 multi-panel	 figures	
in	 a	 manuscript.	 Often,	 authors	 change	 the	
images	 between	 successive	 drafts	 of	 the	
manuscript.	 The	 number	 of	 code	 and	 image	

12

files	grows	large	as	a	manuscript	matures.	The	
image	 and	 the	 code	 that	 generated	 it	 can	 be	
found	by	scrolling	through	the	notebook.	This	
scrolling	 is	 often	 faster	 than	 searching	
through	 the	 files	 in	 dozens	 of	 subfolders.	
Furthermore,	the	need	often	arises	to	remake	
the	 images	 months	 after	 a	 manuscript	 is	
accepted	 for	 publication.	 The	 user	 may	 need	
to	make	 variations	 of	 the	 existing	 images	 for	
journal	cover	artwork,	news	releases,	posters,	
platform	 talks,	 seminars,	 lectures,	 lab	
webpages,	review	articles,	book	chapters,	and	
framed	 wall	 hangings.	 The	 presence	 of	 the	
code	 in	 one	 notebook	 eases	 finding,	
modifying,	and	reusing	the	code.	

The	 storage	 of	 code	 and	 output	 in	 one	
notebook	 simplifies	 the	 sharing	 of	 the	 code	
and	 the	 images.	Only	one	document	needs	 to	
be	sent	electronically	if	the	notebook	does	not	
require	 local	 data	 files.	 If	 the	 code	 blocks	 in	
the	 notebook	 are	 left	 exposed,	 collaborators	
can	 edit	 and	 run	 the	 modified	 code.	 Jupyter	
notebooks	ease	collaborations	by	reducing	the	
number	of	shared	files.	

If	 the	 collaborators	are	not	experts	 in	CCTBX	
or	 PyMOL,	 the	 code	 blocks	 can	 be	 hidden	 to	
reduce	 the	 clutter.	The	 shared	 document	 can	
be	instead	by	a	non-interactive	HTML	file	or	a	
pdf	generated	from	the	Jupyter	Notebook.	The	
JupyterLab	 GUI	 supports	 exporting	 a	
notebook	 to	 alternate	 formats.	 Alternately,	
the	nbconvert	command	 in	 the	 terminal	
converts	a	notebook	 to	one	of	many	 formats.	
(The	 nbconvert	 command	 is	 installed	 when	
Jupyter	 is	 installed.)	Static	 formats	of	 Jupyter	
notebooks	 can	 be	 opened	 without	 using	
Jupyter;	this	makes	the	static	formats	easier	to	
share	 with	 collaborators	 who	 do	 not	 use	
Jupyter.	

Past	and	current	versions	of	the	four	libraries	
are	 archived	with	Zendo.org	 and	are	open	 to	
download.	 The	
provided	jupyterlabcctbxsnips	library	 is	 a	
version	 0.2	 prototype	 library.	 It	 may	 inspire	
users	to	create	snippets.	We	plan	to	add	more	

	

	 32	

ARTICLES

Computational	Crystallography	Newsletter	(2021).	12,	26-32	

	

13

snippets,	and	we	welcome	contributed	snippets.	Users	can	add	snippets	via	 the	 Issues	tab	on	
the	project's	GitHub	page	or	send	them	by	email	to	the	author.	

References	
DeLano,	W.	L.	(2002).	PyMOL	0.99.	

Grosse-Kunstleve,	R.	W.,	Sauter,	N.	K.,	Moriarty,	N.	W.	&	Adams,	P.	D.	(2002).	J.	Appl.	Cryst.	35,	126–136.	

Hunter,	J.	D.(2007)	Comput.	Sci.	Eng.	9,	90-95.	

Kluyver,	T.,	Ragan-Kelley,	B.,	Fernando	Perez,	Granger,	B.,	Bussonnier,	M.,	Frederic,	J.,	Kelley,	K.,	
Hamrick,	J.,	Grout,	J.,	Corlay,	S.,	Ivanov,	P.	Avila,	D.,	Abdalla,	S.,	&	Willing,	C.	(2016).	Jupyter	Notebooks	–	a	
publishing	format	for	reproducible	computational	workflows.	In	F.	Loizides	&	B.	Schmidt	(Eds.),	
Positioning	and	Power	in	Academic	Publishing:	Players,	Agents	and	Agendas	(pp.	87–90).	

Mooers,	B.	H.	M.	(2020).	Protein	Sci.	29,	268-276.	doi:	10.1002/pro.3781.	
	

