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Phenix	News	
Announcements	
Workshop	at	the	meeting	of	the	American	
Crystallographic	Association,	Northern	Kentucky	
Convention	Center,	Saturday,	July	20,	2019	
A	 workshop	 will	 be	 held	 at	 the	 next	 ACA	
annual	 meeting	 in	 Kentucky.	 The	 title	 of	 the	
all-day	program	–	“Introduction	to	PHENIX	for	
Electron	 Cryo-Microscopists”	 –	 indicates	 the	
target	audience.	Updates	to	schedules	and	the	
cost	 are	 available	 from	 the	 ACA	 homepage.	
The	 course	 is	 limited	 to	 50	 participants	 so	
book	early.	
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Expert	advice	
Fitting	 Tip	 #17	 –	 Asn	 and	 Gln	 are	
remarkably	different	
Jane	 Richardson,	 David	 Richardson	 and	
Christopher	Williams,	Duke	University	
Expectations	of	similarity	
With	 the	 same	 amide	 functional	 group	 and	
only	 one	 carbon	 difference	 in	 sidechain	
length,	 Asn	 and	 Gln	 are	 usually	 considered	
one	of	 the	most	 similar	 pairs	 of	 amino	 acids.		
Looking	 at	 their	 2D	 schematic	 diagrams	
(figure	1)	or	at	 their	chemical	makeup	seems	
to	confirm	that	idea,	also	reinforced	by	classic	
lists	of	conservative	amino-acid	replacements.		
But	if	one	looks	at	what	they	each	can	or	can't	

Figure	1:		Schematics	of	Asn	and	Gln	amino	acids.	
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do	in	the	context	of	protein	3D	structures,	that	
one-bond	difference	makes	 a	 huge	 change	 to	
their	capabilities	and	personalities.	
Multi-dimensional	φ,ψ,χ	plots	
Asn	has	only	two	degrees	of	freedom,	and	has	
both	donor	and	acceptor	groups	very	close	to	
the	 backbone,	 where	 they	 can	 form	 many	
distinct	 sidechain-backbone	 hydrogen	 bonds.		
This	 leads	 to	 a	 number	 of	 tight	 and	 unusual	
clusters	 in	 the	 multi-dimensional	 φ ,ψ,χ 	
space.	 	 Glutamine	 has	 more	 degrees	 of	
freedom	 but	 awkward	 constraints	 from	 the	
extra	 tetrahedral	 group	 and	 can	 actually	 H-
bond	back	to	the	mainchain	in	only	a	few	of	its	
possible	conformations.			
As	 one	 way	 of	 showing	 those	 differences,	
figure	 2	 compares	 a	 diagonal	 view	 for	 the	
most	informative	3D	projections	of	the	φ ,ψ,χ 	
plots	 for	Asn	 and	 Gln.	 	 It	 uses	 data	 from	 the	
Top8000	 database	 at	 70%	 sequence	 identity	
(from	the	RCSB	PDB	clusters),	quality-filtered	
at	 both	 chain	 and	 residue	 levels,	 including	
amide	 flips	 (Hintze,	 2016).	 	 There	 are	 about	
54,000	Asn	and	37,000	Gln	residues.			
Each	panel	of	figure	2	shows	a	3D	plot	of	φ ,ψ ,	
and	χ2	 for	Asn	 or	 of	φ ,ψ ,	 and	χ3 	 for	 Gln,	 as	
divided	 down	 the	 vertical	 columns	 by	 the	
three	m,p,t	bins	of	χ1	for	Asn	or	of	χ2	for	Gln.		
The	viewpoint	is	rotated	about	45°	left	from	a	
pure	 Ramachandran-plot	 φ ,ψ 	 projection,	 to	
enable	 spotting	4D	clusters	vs	 spreads	of	 the	
terminal	 amide	 orientations.	 	 Colored	 stars	
mark	 positions	 of	 local	 structure	 motifs	
discussed	here.			
From	 figure	 2,	 the	 simplest	 overall	
observation	 is	 that	 the	datapoint	distribution	
for	 Asn	 is	 much	 more	 diverse	 and	 complex	
than	that	for	Gln.		The	main	reason	is	that	the	
Gln	amides	are	 farther	 from	 the	backbone	 so	
their	 orientations	 can	 spread	 freely	 across	
more	 of	 their	 range.	 	 The	 second	 overall	
observation	is	that	datapoints	are	quite	dense	
within	90°	of	zero	and	absent	or	sparse	within	
90°	of	180°	(Lovell	1999).			Near	180°	the	NH2	
group	clashes	with	backbone	or	Cβ	hydrogen	
atoms.	
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Glutamine	characteristics	
Especially	 when	 Gln	 χ2	 is	 trans,	 the	 χ3 	
distributions	 are	 broad	 smears	 across	 their	
allowed	 range	 away	 from	 180°.	 	 There	 are	
some	 exceptions	 where	 a	 small	 cluster	
appears	 at	 180°	 offset	 from	 the	 central	 χ3	
maximum,	 usually	 seen	 at	 far	 left	 on	 the	
panels	in	figure	2.	 	This	data	has	been	amide-
flip	 corrected	 by	 MolProbity's	 H	 addition	
process	that	uses	both	H-bonding	and	clashes	
in	the	context	of	entire	H-bond	networks	and	
seldom	 declares	 flips	 incorrectly	 (Word	
1999).	 	 But	 it	 has	 a	 threshold	 of	 score	
difference	 below	 which	 it	 will	 keep	 the	
original	orientation;	that	means	there	will	still	
be	some	incorrect	flip	states	remaining,	which	
account	 for	 most	 points	 in	 the	 180°-
translated,	 fainter	 (~10%)	 patterns	 seen	 in	
figure	 2.	 	 	 The	 same	 thing	 happens	 for	 Asn.		
After	 our	 realization	 that	 such	 cases	 are	
rather	 frequent,	 we	 plan	 to	 add	 a	 prior-
probability	 term	 to	 the	 flip-correction	
process.	
Glutamine	does	have	some	preferred	patterns	
of	 amide-to-backbone	 H-bonds,	 but	 they	
nearly	 all	 occur	 in	 otherwise-favorable	
rotamers	 and	 so	 do	 not	 form	 tight,	 well-
separated	clusters.	 	An	especially	notable	Gln	
motif	 forms	 the	 helix	 "cap	box"	H-bond	 from	
the	Gln	OE1	to	the	backbone	NH	of	the	N-cap	
residue	 that	 starts	 an	 α-helix,	 as	 shown	 in	
figure	 3	 for	a	helix	 in	λ	 repressor.	 	This	 case	
has	 a	 Thr	 N-cap,	 although	 Asn	 is	 much	
commoner,	as	described	below.		The	Gln	cap-
box	conformation	happens	to	work	in	exactly	
the	commonest	of	all	Gln	rotamers	(mt-30),	so	
it	just	accounts	for	a	modest	part	of	the	center	
of	that	strong,	elongated	cluster	(hotpink	*	in	
the	Gln	t	panel	of	figure	2).		
Asparagine	characteristics	
Asparagine,	 in	 contrast	 to	 Gln,	 has	 many	
isolated	 clusters	 in	 unusual	 positions	 that	
represent	distinct	local	structural	motifs,	most	
with	 specific	 sidechain-backbone	 H-bonding.		
Figure	 4	 shows	 the	 motifs	 for	 two	 distinct	
datapoint	 clusters	 of	 Asn	 sidechains	 on	
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Figure	2:		Diagonal	views	into	the	multidimensional	φ ,ψ ,χ 	datapoint	distributions	for	Asn,	grouped	by	by	χ1	bins,	
and	for	Gln,	grouped	by	χ2	bins	and	labeled	as	p,	t,	m	for	~60°,	~180°,	and	~	-60°.		View	is	turned	left	by	45°	from	
straight-on	φ ,ψ ,	and	stars	mark	local	structural	motifs	discussed	in	the	text.	
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regular	α-helix	 (a	 relatively	 rare	 location	 for	
Asn),	 clearly	 separated	 in	 χ2	 angle	 by	 an	
energy	 barrier.	 	 At	 left,	 the	 αm-80	 rotamer	
enables	 the	 Asn	 NH2	 to	 H-bond	with	 the	 i-4	
CO	 of	 the	 preceding	 helix	 turn,	 opening	 the	
backbone	 a	 bit,	 but	 still	 allowing	 the	 normal	
helical	 H-bonds	 as	 well.	 	 At	 right,	 the	 much	
more	 common	 αm120	 rotamer	 places	 the	
entire	sidechain	in	good	vdW	contact	with	the	
outer	surface	of	the	preceding	turn	of	regular	
helix.	 	That	 conformation	also	places	 the	Asn	
OE1	 in	 its	 favored	 position	 in	 vdW	 contact	
with	the	following	peptide	(Lovell	1999).		The	
peaks	 for	 those	 rotamers	 are	 marked	 with	
green	stars	in	the	Asn	m	panel	of	figure	2.	
Many	 of	 the	 local	 Asn	motifs	 are	 enabled	 by	
the	 odd	 fact	 that	 the	 Asn	 sidechain	 is	 a	 very	
good	mimic	for	a	residue-unit	of	backbone,	as	
illustrated	 in	 figure	5.	 	At	top	is	a	short	piece	
of	extended	backbone,	with	a	sidechain	(blue)	
going	down	and	back.	 	Below,	on	the	left	half,	
the	main	 chain	 and	 side	 chain	 switch	 places;	
the	 backbone	 now	 goes	 down	 and	 back	 and	
the	 Asn	 sidechain	 (blue)	 mimics	 extended	
backbone	with	χ2	=	0°	and	 is	set	up	to	make	
the	 previous	 CO	 H-bond	 equivalently	
(Richardson	1989).		This	similarity	of	the	Asn	
sidechain	 to	 backbone	 (looking	 in	 the	 N-
terminal	 direction	 from	 a	 given	 Cα)	 is	 also	
probably	 what	 lets	 Asn	 be	 the	 only	 non-Gly	
residue	 good	 at	 adopting	 +φ backbone	
conformations	 –	 the	 Cα	 of	 an	 Asn	 has	 two	
nearly	 identical	 substituents	and	 thus	 is	only	
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weakly	asymmetric,	so	 that	normal	Rα	 is	not	
much	better	than	Lα.		The	strong	Lα	peaks	for	
Asn	 are	marked	with	 blue	 stars	 in	 the	 Asn	 t	
and	 m	 panels	 of	 figure	 2,	 each	 with	 one	
rotamer.		Asn	with	χ1	=	p	cannot	adopt	either	
Rα	or	Lα	(see	figure	2)	
There	are	many	local	motifs	in	which	the	Asn	
sidechain	mimics	backbone.	 	One	such	case	is	
a	 "pseudo-turn",	 where	 the	 Asn	 takes	 the	
place	of	the	first	peptide	in	a	tight	turn,	using	
Asn's	 most	 common	 local	 H-bond	 to	
backbone:	 Oδ1	 to	 the	 i+2	 backbone	 NH	
(Richardson	1981).	
An	 important	 second	case	of	 such	mimicry	 is	
at	 helix	N-caps,	where	Asn	 is	 especially	good	
at	 competing	with	backbone	 for	 its	usual	 i+4	
helical	 H-bond.	 	 As	 shown	 in	 figure	 6,	 there	
are	two	possible	rotamers	that	can	make	that	

Figure	3:		A	helical	"cap-box"	Gln	

Figure	4:		Two	distinct	conformations	of	Asn	on	α-helix	

Figure	5:		How	an	Asn	sidechain	mimics	backbone.	
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H-bond,	but	p30	is	the	more	common,	since	it	
is	 a	 closer	 geometric	 mimic	 and	 puts	 the	
displaced	 backbone	 in	 β	 rather	 than	
polyproline	 II	 conformation.	 	 Asn	 is	 not	 only	
the	commonest	N-cap	residue,	 it	is	by	a	large	
factor	 the	 most	 specific,	 very	 strongly	
preferring	the	N-cap	position	and	disfavoring	
the	 surrounding	 N-1	 or	 N+1	 to	 3	 positions	
(Richardson	1988).	 	The	 sequence	placement	
of	 an	 Asn,	 then,	 exerts	 a	 strong	 influence	 on	
where	a	helix	starts,	and	on	the	direction	from	
which	the	chain	enters.		
Yet	 another	 Asn	 backbone-mimic	 motif	 is	 to	
provide	 one	 more	 H-bond	 (sidechain-
backbone)	 past	 β-sheet	 backbone	 H-bonding	
between	 two	 β-strands,	 either	 parallel	 or	
antiparallel.	 	Usually	only	one	such	H-bond	is	
formed,	 but	 figure	 7	 shows	a	 case	where	 the	
Asn	amide	forms	two	H-bonds	to	the	opposite	
β-strand	and	a	 third	to	a	separate	part	of	 the	
chain.	
	The	bottom	line	
Glutamine	is	rather	a	"plain	vanilla"	sidechain,	
with	 Ramachandran	 plot	 and	 positional	
preference	 closest	 to	 the	 average	 of	 all	
residues.	 	 Asparagine,	 in	 contrast,	 has	 very	
distinct	 and	 opinionated	 conformational	
possibilities,	 both	 because	 it	 has	 H-bond	
donors	 and	 acceptors	 close	 to	 the	 backbone	
and	because	it	can	mimic	a	backbone	residue.	
When	 modeling	 Asn	 or	 Gln	 residues	 into	 a	
density	map	 or	 evaluating	 them	 later,	 if	 you	
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have	assigned	a	conformation	with	the	final	χ 	
angle	closer	to	180°	than	to	0°,	try	the	flipped	
alternative.	 	 If	 the	 orientation	 closer	 to	 0°	
looks	at	least	nearly	as	good	by	other	criteria,	
then	use	that	(more	probable)	alternative.	
When	 modeling	 Asn	 sidechains,	 look	 for	
approximation	 to	 one	 of	 its	 distinctive	 local	
motifs	 such	 as	 N-caps,	 pseudo-turns,	 Lα	
backbone,	interactions	with	the	previous	helix	
turn,	H-bonding	 across	 the	 end	 of	 a	β-strand	
pair,	etc.		If	your	Asn	and	its	neighborhood	are	
close	 to	 the	 arrangement	 of	 a	 typical	 Asn	
motif,	try	restraining	the	appropriate	rotamer	
and	H-bonds.	 	In	loops,	look	for	any	plausible	
sidechain-backbone	or	sidechain-sidechain	H-
bonding	 opportunities	 accessible	 with	 small	
changes.	
If	 thinking	 about	 mutations	 or	 evolutionary	
relationships,	 don't	 consider	 Asn	 and	 Gln	 as	
conservative	 replacements	 for	 each	 other	
unless	 you	 know	 their	 function	 is	 either	
complete	solvent	exposure	or	very	long-range	
amide	H-bonding.	 	Asn	is	more	often	the	best	
replacement	for	a	Gly	than	for	a	Gln.	
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FAQ	

Are	the	defaults	the	best	for	refinements?	

Of	course,	the	answer	is	no.	The	defaults	have	
been	chosen	to	provide	the	best	results	in	the	
shortest	 time	 for	 the	majority	 of	models	 and	
data.	

One	 of	 the	 first	 options	 to	 change	 is	
optimize_xyz_weight.	Setting	this	option	

12

to	true	will	optimize	the	weight	used	between	
the	 geometry	 and	 data	 terms	 of	 the	
refinement	 target	 function.	 Details	 can	 be	
found	in	Afonine	et	al.,	2011.	

One	 can	 also	 increase	 the	 number	 of	
refinement	 macros	 cycles	 using	
number_of_macro_cycles to	 ensure	
convergence.	Ten	is	an	adequate	number.	
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Introduction	
Robust	 identification	 of	 the	 results	 from	
robotic	 crystallisation	 systems	 is	 vital	 to	
research	 in	 both	 industry	 and	 academia.	
Various	research	groups	have	approached	the	
problem	 of	 crystal	 recognition	 using	
automated	 image	 analysis.	 As	 large,	 reliably	
annotated	training	can	increase	success	rates,	
the	 largest	 training	 set	 of	 images	 previously	
compiled,	 comprising	 ~150,000	 images,	 has	
been	 heavily	 used	 in	 that	 context.	 The	
resulting	 methods,	 however,	 often	 require	
time-consuming	preprocessing	stages,	such	as	
image	 segmentation	 and	 feature	 extraction.	
The	 machine-learning	 algorithms	 used	 for	
classification	 have	 thus	 far	 been	 specific	 to	
particular	 experimental	 setups	 and	 imaging	
systems.		

The	MARCO	initiative	
The	 macromolecular	 crystallization	 images	
collated	 by	 the	 Machine	 Recognition	 of	
Crystallization	 Outcomes	 (MARCO)	
consortium	 includes	 roughly	 half	 a	 million	
annotated	 images	 over	 different	 technical	
setups	 and	 imaging	 systems	 from	 five	
academic	 institutions	 and	 pharmaceutical	
companies	 (Figure	 1.	 Images	 available	
from	https://marco.ccr.buffalo.edu/).	 In	
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contrast	to	the	carefully	curated	datasets	used	
previously,	 the	 MARCO	 dataset	 includes	
images	 with	 very	 different	 fields	 of	 view,	
problems	with	focus	or	illumination	as	well	as	
those	 with	 dispensing	 errors.	 The	 scoring	
protocols	 of	 different	 institutions	 varied	 and,	
in	 order	 to	 homogenize	 the	 MARCO	 dataset,	
annotations	 were	 simplified	 to	 a	 four-class	
system:	Crystals,	Precipitate,	Clear	and	Other.	
In	collaboration	with	researchers	from	Google	
Brain,	 state-of-the-art	 deep	 learning	
algorithms	 were	 then	 applied	 to	 the	 MARCO	
dataset	 for	 classification.	 These	 algorithms	
employ	 Convolution	Neural	Networks	 (CNN),	
which	require	minimal	preprocessing	and	are	
particularly	 suited	 to	 image	 analysis.	 Using	a	
single	model	with	all	data	 sources	 combined,	
the	 trained	 CNN	 was	 able	 to	 correctly	 label	
94.5%	 of	 the	 independent	 test	 images,	
regardless	 of	 their	 experimental	 origin.	 The	
algorithm	 and	 results	 are	 described	 in	 PloS	
one	 (https://arxiv.org/pdf/1803.10342.pdf)	
and	 an	 open	 source	 version	 of	 classifier	 is	
available	 at	
https://github.com/tensorflow/models/tree/
master/research/marco.	
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Figure	1:	Images	in	the	MARCO	dataset	show	different	experimental	set-ups	with	various	fields	of	view	
and	resolutions	from	five	industrial	and	academic	partners:	(A)	Collaborative	Crystallisation	Centre;	(B)	
and	(F)	GlaxoSmithKline;	(C)	Merck	&	Co;	(D)	Bristol-Myers	Squibb;	(E)	Hauptman-Woodward	Medical	
Research	Institute.	
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Building	a	model	the	way	you	do:	Map-to-model	version	2	
Tom	Terwilliger	
Los	Alamos	National	Laboratory,	Los	Alamos	NM	87545	
New	Mexico	Consortium,	100	Entrada	Dr,	Los	Alamos,	NM	87544	

2

Wouldn’t	 it	 be	 nice	 if	 Phenix	 could	 trace	 the	
density	in	a	cryo-EM	map	the	way	you	do:	find	
the	clearest	density,	 trace	the	 chain	at	a	high	
contour	 level,	 then	 dial	 down	 the	 contours	
until	 connections	 appear	 and	 trace	 the	
remainder	 of	 the	 chain?	 Seems	 so	 easy	 that	
even	a	computer	could	do	it	this	way.	

Well	now	 it	does!	Version	2	of	map-to-model	
uses	a	 super-quick	new	algorithm	 for	model-
building	 the	 mimics	 how	 you	 would	 do	 it	
yourself.			

Before	 tracing	 the	 chain,	map-to-model	 finds	
helices	 and	 strands	 in	 the	 map.	 These	
secondary	 structure	 elements	 are	 often	 very	
accurate,	so	they	are	going	to	be	used	as	fixed	
parts	of	the	model	to	be	built.		

Next,	 map-to-model	 traces	 the	 chain	 just	 as	
you	 would	 using	 the	 new	 tool	 called	 trace-
and-build.	 The	 trace-and-build	 tool	 chooses	
good	 density	 marked	 by	 the	 helices	 and	
strands	 and	 finds	 other	 segments	 of	 density	
that	are	very	clear.	Then	it	tries	to	join	pairs	of	
good	 segments	 of	 density	 by	 finding	 the	
highest	 contour	 level	 that	 just	 allows	 a	
connection.	 If	 the	 connection	 doesn’t	 branch	
and	isn’t	already	used,	the	pair	of	segments	is	
joined	 to	make	 a	 single	 longer	 segment.	This	
process	of	chain	tracing	 is	continued	until	no	
clear	connections	exist.			

Figure	 1	 shows	 the	 chain	 tracing	 obtained	
from	the	small	rotavirus	map	provided	in	the	
Phenix	 distribution	 as	 a	 model-building	
example.	 The	 map-to-model	 algorithm	 finds	
one	 long	 chain	 and	 a	 few	 short	 fragments.	
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When	 you	 run	 map-to-model	 in	 the	 Phenix	
GUI,	 this	 chain	 tracing	 with	 the	 density	 and	
path	 of	 each	 chain	 displayed	 for	 you	
automatically.	

Once	the	path	of	a	chain	is	identified,	a	protein	
model	 is	 built	 using	 that	 path	 as	 a	 guide.	
Imagine	 you	 are	 building	 a	 model	 and	 you	
have	traced	 the	chain.	What	 is	 the	next	 thing	
you	 are	 going	 to	 look	 for?	 Surely	 you’ll	 look	
for	side	chains	marking	the	Cβ	positions.	Once	
again	 map-to-model	 does	 this	 just	 the	 way	
you	would.	It	looks	for	density	coming	off	the	
path	 of	 the	 main-chain	 and	 marks	 likely	 Cβ	
positions.	 Then	 it	 uses	 the	 new	 tool	 called	
refine_ca_model	 to	 find	 a	 set	 of	 Cα	 and	 Cβ	
positions	 that	are	spaced	3.8Å	apart	and	that	
match	 the	 likely	 Cβ	 positions	 as	 closely	 as	
possible.	At	this	point	the	helices	and	strands	
that	 were	 identified	 at	 the	 beginning	 of	 the	
procedure	are	spliced	into	the	chains,	creating	
a	mosaic	model	and	using	the	fixed	secondary	
structure	 elements	 wherever	 they	 are	
present.	 With	 the	 Cα	 and	 Cβ	 positions	 for	 a	
chain	 identified,	 map-to-model	 uses	 the	 tool	
Pulchra	 (Rotkiewicz	 &	 Skolnick,	 2008)	 to	
generate	 an	 all-atom	 model	 that	 is	 refined	
against	 the	 map	 with	 the	 Phenix	 real-space-
refine	tool.	

The	last	step	in	model-building	is	to	figure	out	
what	 part	 of	 the	 sequence	 in	 your	 sequence	
file	 is	 associated	 with	 each	 segment	 in	 the	
model.	This	is	done	in	map-to-model	with	the	
new	 tool	 called	 sequence_from_map.	 At	 each	
position	 in	the	model,	 the	density	 in	 the	map	
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Figure	1:	Example	of	chain	tracing.	

4

at	 the	 side-chain	 position	 is	 compared	 with	
expected	 density	 for	 each	 rotamer	 of	 each	
possible	amino	acid,	and	a	relative	probability	
for	 each	 amino	 acid	 at	 each	 position	 is	
calculated.	A	pseudo-sequence	is	then	created	
using	 the	 most	 likely	 amino	 acids	 at	 each	
position	 in	 the	 model.	 This	 map-based	
sequence	 is	 then	 aligned	 to	 the	 supplied	
sequence	 and	 the	 best	 alignment	 is	 chosen	
and	 the	 corresponding	 amino	 acids	 are	 used	
at	each	position	in	the	model.	

5

Figure	 2	 shows	 part	 of	 the	model	 created	 in	
this	way	 for	 the	 small	 rotavirus	map	used	 in	
figure	 1.	 The	 entire	 process	 takes	 about	 5	
minutes	 on	 a	 4-processor	 machine	 for	 this	
small	 structure.	 The	 model	 is	 not	 perfect	 (it	
has	 some	 insertions/deletions)	 but	 it	 is	 very	
close	to	the	known	structure	of	this	rotavirus	
protein.	

Once	you	have	built	a	quick	model	with	map-
to-model,	 you	 can	 go	 back	 and	 improve	 it.	 If	
you	can	see	that	some	segments	really	should	
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Figure	2:	Model	created	from	tracing	in	figure	1.	

6

be	 joined,	 you	 can	 feed	 just	 those	 segments	
back	 into	map-to-model	and	tell	 it	to	connect	
them.	Or	if	you	want	to	get	rid	of	some	of	the	
sequence	 errors,	 you	 can	 feed	 your	 model	
back	 into	map-to-model	and	tell	 it	 to	run	 fix-
insertions-deletions.	 It	 will	 use	 the	 sequence	
to	 try	 and	 identify	 where	 insertions	 and	

7

deletions	are	present	and	it	will	rebuild	those	
segments	 with	 the	 appropriate	 number	 of	
residues.	

Give	 the	 new	map-to-model	 a	 try	 and	 let	 us	
know	 of	 anything	 that	 you	 would	 like	
improved!		

8
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Rotkiewicz,	P.,	J.	Skolnick.	J.	(2008).	Fast	procedure	for	reconstruction	of	full-atom	protein	models	from	
reduced	representations.	Comput	Chem	29,	1460-5.	

	

	

	


