
	 45	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

Computational
Crystallography
Newsletter	

1 .14, Cablam, Vicinal SS

V
o

lu
m

e
N

in
e

Ju
ly

 M
M

X
V

II
I

The	Computational	Crystallography	Newsletter	(CCN)	is	a	regularly	distributed	electronically	via	email	and	the	Phenix	website,	
www.phenix-online.org/newsletter.	 Feature	 articles,	meeting	 announcements	 and	 reports,	 information	 on	 research	 or	 other	
items	of	interest	 to	computational	crystallographers	or	crystallographic	software	users	can	be	submitted	to	 the	editor	at	any	
time	for	consideration.	Submission	of	text	by	email	or	word-processing	files	using	the	CCN	templates	is	requested.	The	CCN	is	
not	a	formal	publication	and	the	authors	retain	full	copyright	on	their	contributions.	The	articles	reproduced	here	may	be	freely	
downloaded	for	personal	use,	but	to	reference,	copy	or	quote	from	it,	such	permission	must	be	sought	directly	from	the	authors	
and	agreed	with	them	personally.	

1

Table	of	Contents	
•Phenix	News	 	 	 	 45	
•Expert	Advice		
• Fitting	tips	#16	–	Vicinal	disulfides:	Have	
you	seen	one	of	these	strange	gems?		 46	

•Short	Communications	
• CaBLAM:	A	C-Alpha	Based	Low-resolution	
Annotation	Method	for	secondary	
structure	and	validation		 	 51	

• Tools	for	interpreting	cryo-EM	maps	using	
models	from	the	PDB	 	 	 58	

•Articles	
• Using	the	New	Program	Template	 62	

Editor	
Nigel	W.	Moriarty,	NWMoriarty@LBL.Gov	

Phenix	News	
Announcements	
Phenix	1.14	release	
The	 Phenix	 developers	 are	 pleased	 to	
announce	 that	 version	1.14	of	 Phenix	 is	 now	
available	 (build	1.14-3260).	 Binary	 installers	
for	 Linux,	 Mac	 OSX,	 and	Windows	 platforms	
are	available	at	the	download	site.1	Highlights	
for	this	version	include	new	tools	and	feature	
enhancements:		

2

Reorganization,	 updates	and	addition	 of	 cryo-
EM	tools	
• 	phenix.mtriage	-	assess	map	and	model	
quality		

• phenix.auto_sharpen	-	map	sharpening	
• phenix.map_symmetry	-	identify	symmetry	in	
maps		

• phenix.map_box	-	cut	out	unique	parts	of	maps		
• phenix.combine_focused_maps	-	combine	
different	maps		

• phenix.dock_in_map	-	automatically	place	
an	atomic	model	into	a	map		

• phenix.map_to_model	-	automatically	build	
atomic	model	from	a	map		

• phenix.sequence_from_map	-	identify	
sequence	from	a	map		

• phenix.real_space_refine	-	improved	
refinement	of	models		

• phenix.validation_cryoem	-	separate	tool	
for	comprehensive	validation	of	models	
and	maps	

• phenix.cablam_idealization	-	Tool	to	
automatically	fix	Cablam	outlier	

eLBOW		
• better	support	for	metals	and	metal	clusters	
• added	plugin	for	QM	package	Orca	

1	http://phenix-online.org/download/	

	 46	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

3

Phaser-2.8.2	
• bugfixes	
• Phassade	substructure	search	when	starting	
from	seed	substructure	

• fix	crash	in	MR_ATOM	
• problems	with	cumulative	intensity	
distribution	for	extremely	weak	data	

• improve	computation	and	presentation	of	data	
information	content	

Performance	improvements	
• NCS	search	
• Generation	of	secondary	structure	restraints	
• Clashscore	calculation	
• AmberPrep	is	more	robust	
• Restraints	for	ARG	improved	

New	Phenix	video	tutorials	

GUI	
• New	section	in	main	window	for	cryo-EM	tools	
• Separate	validation	GUI	for	cryo-EM	structures	
o Added	phenix.map_symmetry	
o Added	phenix.dock_in_map	
o Added	phenix.map_to_structure_factors	
o Added	phenix.combine_focused_maps	
o Added	phenix.sequence_from_map	

phenix.ligand_identification:	
• Added	an	option	to	generate	ligand	library	
based	on	sequence	and	structural	homologs	of	
the	input	pdb	model.	

4

Amber	
A	 new	 command,	 amber.h_bond_information,	
has	 been	 added	 to	 use	 the	 Amber	 H-bond	
detection	code.	Once	AmberTools	 is	 installed,	
the	command	will	provide	the	total	number	of	
H-bonds	into	a	protonated	model.	

Expert	advice	
Fitting	Tip	#16	–	Vicinal	disulfides:	Have	
you	seen	one	of	these	strange	gems?	
Jane	Richardson	and	Lizbeth	Videau	
Duke	University	

What	is	a	vicinal	SS?	
A	 vicinal	 SS	 is	 a	 disulfide	 between	 two	
sequence-adjacent	cysteine	residues,	with	the	
rather	startling	appearance	shown	in	figure	1	
for	a	1.75Å-resolution	example	in	1wd3.	Early	
calculations	 implied	 that	 a	 vicinal	 SS	 could	
form	 only	 with	 a	 cis	 peptide	
(Chandrasekharan	 1969)	 with	 the	 first	 two	
protein-crystal	 examples	were	both	 fit	 as	cis,	
although	 undeposited.	 When	 both	 of	 those	
cases	were	 shown	 to	 actually	 be	 trans,	 most	
studies	 including	 the	 one	 review	 (Carugo	

Figure	 1:	 	 Stereo	 of	 a	 cis	 vicinal	 disulfide	 in	 C-conformation,	 in	 its	 clear	 2Fo-Fc	 electron	 density	 at	 1.75Å	 (1.2σ	
contours	in	gray,	3σ	in	black)	Cys	177	from	the	1wd3	arabino-furanosidase	(Miyanaga	2004).	

	 47	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

5

2003)	assumed	vicinal	SS	would	all	be	trans.	It	
is	 by	 now	 indisputable	 that	 the	 intervening	
peptide	 can	 be	 either	 cis	 or	 trans,	with	 trans	
more	 common	 –	 however,	 both	 forms	 are	
quite	 rare.	 Vicinal	 SS	 occurrence	 patterns,	
conformations	 and	 functions	 were	 recently	
reviewed	 (Richardson	 2017)	 based	 on	
quality-filtered	 reference	 data	 and	 hand-
curation	of	examples.		
Most	 sequence-adjacent	 Cys	 residues	 (not	
bridged)	are	in	the	reduced	SH	form	and	only	
rarely	 can	both	Cys	 ligand	 the	 same	metal.	 If	
they	 are	 in	 the	 oxidized	 state,	 they	 usually	
bond	to	different	partners	rather	than	to	each	
other,	 especially	 in	 small	 SS-rich	 proteins.	
Vicinal	 SS	 are	 the	 exception	 to	 all	 the	 above	
rules.	 Like	 most	 rare	 and	 energetically	
unfavorable	 arrangements,	 when	 they	 do	
genuinely	 occur,	 they	 are	 almost	 always	
functionally	 important	 and	 thus	 well	 worth	
examining.	There	are	 surprisingly	 few	vicinal	
SS	 with	 redox	 functionality,	 but	 they	 confer	

6

stability,	 bind	 ligands	 and	 gate	 large	
conformational	changes.		
Appearance	at	various	resolutions	
At	 high	 to	 medium	 resolution	 a	 vicinal	
disulfide	 is	 very	 clear	 and	 obvious	 unless	
there	 is	 substantial	 local	 disorder.	 In	 well-
ordered	 regions,	 even	 at	 3Å,	 they	 can	 be	
recognized	 as	a	 large,	 dense	 protrusion	 from	
the	 backbone	 (see	 figure	 2).	 However,	 the	
evidence	 can	 disappear	 near	 4Å	 (discussed	
later)	 or	 in	 partially	 disordered	 regions.	
Assigning	 the	 detailed	 conformation	 is	 more	
difficult,	 of	 course,	 since	 that	 depends	 on	
positions	 of	 the	 carbonyl	 O	 and	 Cβ	 atoms,	
which	disappear	somewhere	between	2.5	and	
3Å	 resolution.	 Even	 so,	 trying	 the	 four	
possibilities	 shown	 in	 the	 next	 section	might	
suggest	a	preferred	answer.	Keep	in	mind	that	
a	 vicinal	 SS	 is	 somewhat	 strained	 and	
susceptible	 to	 radiation	 damage,	 so	 if	 the	
bond	 is	 seen	 to	 be	 partially	 or	 fully	 broken,	
that	 does	 not	 prove	 it	 was	 not	 originally	 SS-

Figure	2:		Stereo	of	a	cis	vicinal	disulfide,	also	in	C-	conformation,	shown	as	bonded	by	the	electron	density	at	3.1Å	
resolution.		Cys	e	28	from	the	4tvp	human	anti-HIV	Fab	in	complex	with	env	(Pancera	2014).		The	vicinal	SS	is	in	a	
variable	loop	of	the	light	chain,	near	but	not	at	the	binding	site.	

	 48	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

7

bonded	 (see	 3t4m,	 with	 Cys-trans-Cys191	
bonded	 in	 chain	 B,	 broken	 in	 chain	 E,	 and	
probably	a	mixture	in	chain	D).	
Conformations	
Only	 four	 different	 conformations	 are	
observed	in	reliable	examples,	two	for	cis	and	
two	for	trans,	as	compared	in	figure	3.	For	cis,	
disulfide	 handedness	 changes	 between	 the	
two	conformations,	and	for	trans,	the	peptide	
orientation	 changes.	 The	 names	 of	 the	
conformations	 change	 sign	 (C+	 vs	 C-)	 or	
describe	the	shape	as	viewed	from	above	(Tx	
vs	 Tz).	 No	 cases	 of	 dynamic	 interconversion	
between	cis	and	trans	are	seen,	not	surprising	
given	 the	 tight,	 rather	 strained	 ring.	
Specifications	of	 these	 conformations	 for	use	
in	 model	 building	 are	 given	 in	 Richardson	

8

2017.	 These	 four	 conformations	 also	 match	
the	 four	 distinct	 cases	 observed	 by	 NMR	 for	
dipeptides	in	solution	(Creighton	2001).	
Functions	
The	 best-known	 vicinal	 disulfide	 is	 the	 Cys-
trans-Cys	of	 the	 "C	 loop"	of	α	 subunits	 in	 the	
pentameric	 nicotinic	 acetylcholine	 receptor	
(nAchR).	 The	 vicinal	 SS	 is	 essential	 both	 for	
agonist	 binding	 and	 for	 the	 large	
conformational	 change	 that	 couples	 that	
binding	 to	 ion	 channel	 opening.	 Figure	 4	
shows	 it	 for	 the	closed,	agonist-binding	state.	
In	 this	 cryoEM	map	 at	 3.7Å	 one	 can	 see	 it	 is	
positioned	 to	 touch	 the	 ligand,	 but	
confirmation	 of	 the	 actual	 SS	 bond	 comes	
from	 decades	 of	 biochemical	 and	 genetic	
analysis	 and	 from	 higher-resolution	
structures.		

Figure	3:		The	four	conformations	of	vicinal	disulfides	seen	in	reliable	examples.			a)	Cis	peptide	with	righthanded	
χ3,	called	C+.		b)	Cis	with	lefthanded	χ3,	called	C-.		c)	Trans	and	lefthanded,	with	the	SS	making	an	X	shape	relative	
to	the	peptide	bond,	called	Tx.		d)	Trans	and	lefthanded,	with	the	SS	making	a	Z	shape	relative	to	the	peptide,	called	
Tz.	

	 49	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

9

Other	 vicinal	 SS	 that	 control	 large	
conformational	 changes	 occur	 in	 von	
Willebrand	blood	clotting	factor	(3gxb)	where	
the	 SS	 stays	 bonded	 as	 in	 nAchR,	 and	 in	
mercuric	 reductase	 (1zk7)	 and	 the	 human	
transglutaminase	 2	 implicated	 in	 celiac	

10

disease,	where	the	change	 involves	reduction	
of	the	SS	bond	(2q3z).		
Many	 examples	 seem	 to	 primarily	 add	
stability	 by	 tight,	 buried	 contacts	 of	 protein	
structure	around	the	large	lump	of	the	vicinal	
SS,	 for	 example	 in	 transferrin-binding	

Figure	4:		Stereo	of	the	trans	vicinal	disulfide	of	nAchR	at	3.7Å.		Cys	e	28	from	the	6cnj	2α3β	nicotinic	acetylcholine	
receptor	(Walsh	2018).	

Figure	 5:	 	 Stereo	 of	 a	 vicinal	 SS	 contributing	 to	 specific	 binding	 of	 a	 ring	 ligand.	 	 Cys	 104	 and	 PQQ	
(pyrroloquinoline	 quinone)	 from	 the	 2.2Å	 2ad6	 methanol	 dehydrogenase	 (Li	 2011).	 	 All-atom	 contacts	 for	
favorable	van	der	Waals	interaction	between	SS	and	PQQ	are	shown	by	green	and	blue	dot	surfaces.	

	 50	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	2.	

11

proteins	 (3hoL),	 a	 cytokine	 receptor	 (4nn5),	
and	a	viral-envelope	ribonuclease	(4dvk).		
Perhaps	the	most	widespread	but	unexpected	
function	 of	 vicinal	 disulfides	 is	 to	 provide	
specific	 binding	 of	 the	 undecorated	 face	 of	 a	
sugar	 or	 other	 ring	 ligand.	 This	 occurs	 in	 at	
least	 six	 unrelated	 protein	 families	 with	
distinct	 folds:	 nAchR	 (2qc1),	 ConA-type	
lectins	(1wd3),	small	Greek-key	antiparallel	β	
(1k12),	 β-propeller-5	 (1gyh,	 3d61),	 β-
propeller-8	(2ad6),	and	TIM	barrel	(2fhf).	The	
flat,	 rigidly	 held	 C-S-S	 face	 of	 the	 vicinal	 SS	
makes	extensive	steric	contact	with	the	ligand	
ring,	 thus	 selecting	 for	 an	 undecorated	
position	 with	 only	 H,	 in	 concert	 with	 H-

12

bonding	groups	 that	 can	 select	 for	a	position	
with	 an	 OH	 group.	 Figure	 5	 shows	 the	 all-
atom	 contact	 dots	 of	 such	 a	 case,	 for	 Cys-
trans-Cys104	helping	bind	the	PQQ	cofactor	in	
the	2ad6	methanol	dehydrogenase	at	2.2Å	(Li	
2011).	 Functional	 details	 about	 more	 vicinal	
SS	examples	can	be	found	in	Richardson	2017.	
The	bottom	line	
Vicinal	disulfides	are	extremely	rare;	so	don't	
model	one	unless	you're	sure	 it's	right.	But	 if	
you	 do	 see	 one,	 it's	 very	 likely	 to	 be	 of	
functional	 importance	 for	 stability,	 or	 for	
control	 of	 conformational	 change,	 or	 for	
specific	 binding	 of	 the	 undecorated	 face	 of	 a	
ring	ligand.	

13

References:	
Carugo	O,	Cemazar	M,	Zahariev	S,	Hudaky	I,	Gaspari,Z,	Perczel,A,	Pongor	S	(2003)	Vicinal	disulfide	turns,	Protein	Engin,	16:	
637-639	

Chandrasekharan	R,	Balasubramanian	R	(1969)	Stereochemical	studies	of	cyclic	peptides.	VI.	Energy	calculations	of	the	cyclic	
disulphide	cysteinyl-cysteine,	Biochim	Biophys	Acta	188:	1-9	

Creighton	CJ,	Reynolds	CH,	 Lee	DHS,	 Leo	GC.,	 Reitz	AB	(2001)	Conformational	analysis	 of	 the	 eight-membered	 ring	 of	 the	
oxidized	 cysteinyl-cysteine	 unit	 implicated	 in	 nicotinic	 acetylcholine	 receptor	 ligand	 recognition,	 J	 Am	 Chem	 Soc.123:	
12664-12669	

Li	 J,	 Gan	 J-H,	 Mathews	 FS,	 Xia	 Z-X	 (2011)	 The	 enzymatic	 reaction-induced	 configuration	 of	 the	 prosthetic	 group	 PQQ	 of	
methanol	dehydrogenase,	Biochem	Biophys	Res	Commun	406:	621-626	[2ad6]	

Miyanaga,	A.,	Koseki,	T.,	Matsuzawa,	H.,	Wakagi,	T.,	Shoun,	H.	&	Fushinobu,	S.	(2004).	Crystal	structure	of	a	family	54	alpha-L-
arabinofuranosidase	reveals	a	novel	carbohydrate-binding	module	that	can	bind	arabinose,	J	Biol	Chem	279:	44907-44914	
[1wd3]	

Pancera	M,	Zhou	T,	Druz	A,	Georgiev	IS,	Soto	C,	Gorman	J,	Huang	J,	Acharya	P,	Chuang	G-Y,	Ofek	G,	Stewart-Jones	GBE,	Stuckey	
J,	 Bailer	 RT,	 Joyce	MG,	 Louder	MK,	 Tumba	N,	 Yang	 Y,	 Zhang	B,	 Cohen	MS,	Haynes	 BF,	Mascola	 JR,	Morris	 L,	Munro	 JB,	
Blanchard	 SC,	Mothes	W,	Connors	M,	Kwong	PD	 (2014)	Structure	 and	 immune	 recognition	of	 trimeric	pre-fusion	HIV-1	
Env,	Nature	514:	455-461	[4tvp]	

Richardson	JS,	Videau	LL,	Williams	CJ,	Richardson	DC	(2017)	Broad	analysis	of	vicinal	disulfides:	Occurrences,	conformations	
with	cis	or	with	trans	peptides,	and	functional	roles	including	sugar	binding,	J	Molec	Biol	429:	1321-1335	

Walsh	RM,	Roh	SH,	Gharpure	A,	Morales-Perez	CL,	Teng	J,	Hibbs	RE	(2018)	Structural	principles	of	distinct	assemblies	of	the	
human	alpha	4	beta	2	nicotinic	receptor,	Nature	557:	261-265	[6cnj]	

FAQ	

How	do	I	model	a	partially	broken	disulphide?	

Use	the	phil	parameter:	
disulfide_bond_exclusions_selection_string="chain	A	and	resseq	34	and	name	SG	and	altloc	A"	
It	works	in	phenix.refine, phenix.real_space_refine, phenix.dymanics,	
phenix.geometry_minimization,	and	more.	There	are	GUI	fields	of	these	commands	in	"All	
parameters"	or	"model	interpretation	parameters"	where	a	search	will	find	the	interface	
required.	There	is	a	video	tutorial	"Changing	custom	parameters	in	phenix.refine"	@	
							http://phenix-online.org/documentation/reference/tutorial_channel.html	

	

	

51	

51	Computational	Crystallography	Newsletter	(2018).	9,	51–57	

SHORT COMMUNICATIONS

1

CaBLAM:	 A	 C-Alpha	 Based	 Low-resolution	 Annotation	 Method	 for	
secondary	structure	and	validation	

Christopher	J.	Williams,	David	C.	Richardson,	and	Jane	S.	Richardson	
Department	of	Biochemistry,	Duke	University,	Durham,	NC	27710	

Correspondence	email:	Christopher.sci.williams@gmail.com	or	dcrjsr@kinemage.biochem.duke.edu			

2

Introduction	
The	 intent	 of	 this	 piece	 is	 to	 provide	
documentation	 of	 the	 CaBLAM	 validation,	
including	 its	 methods,	 its	 parameter	 space	
and	its	accessibility	within	Phenix.	More	detail	
is	provided	here	than	could	be	included	in	the	
Williams	2018	MolProbity	paper;	 still	 further	
background	 and	 detail	 can	 be	 found	 in	 the	
Williams	2015	PhD	thesis.	

CaBLAM	 stands	 for	 C-Alpha	 Based	 Low-
resolution	 Annotation	 Method.	 It	 is	 a	
validation	 system	 designed	 to	 describe	 and	
validate	protein	backbone	using	Cα	geometry	
and	 relative	 peptide	 plane	 orientations.	
CaBLAM	 is	 most	 valuable	 as	 a	 validation	 at	
resolutions	 and	 in	 regions	 where	 the	
backbone	 Cα	 trace	 can	 be	 reasonably	
determined	from	the	electron	density,	but	the	
positions	 of	 backbone	 carbonyl	 oxygens	
cannot.		

CaBLAM	measures	
CaBLAM	 describes	 protein	 backbone	 using	
various	 2-	 and	 3-dimensional	 parameter	
spaces	 constructed	 from	 4	 geometric	

3

measures.	 These	 measures	 are	 two	 Cα	
pseudodihedrals,	 μin	 and	 μout;	 the	 Cα	 virtual	
angle;	 and	 a	 dihedral	 relating	 adjacent	
peptide	planes,	ν.	

The	 two	 Cα	 pseudodihedrals,	 or	 virtual	
dihedrals,	 (figure	 1)	 are	 used	 in	 all	 of	
CaBLAM’s	 parameter	 spaces.	 μin	 is	 defined	
using	the	atom	positions	Cαi-2,	Cαi-1,	Cαi,	Cαi+1.	
μout	 is	defined	using	 the	atom	positions	Cαi-1,	
Cαi,	 Cαi+1,	 Cαi+2.	 The	 combined	 calculation	 of	
μin	and	μout	requires	five	residues	in	sequence	
from	Cαi-2	to	Cαi+2,	making	CaBLAM	validation	
undefined	 within	 two	 residues	 of	 chain	
termini	and	breaks.	

The	 Cα	 virtual	 angle	 is	 defined	 in	 the	
conventional	 manner,	 using	 the	 atom	
positions	Cαi-1,	Cαi,	Cαi+1.	

The	 ν	 dihedral	 (figure	 2)	 requires	 the	
construction	of	 two	pseudo-atom	points.	The	
point	Xi-1	is	constructed	on	the	line	from	Cαi	to	
Cαi-1,	at	the	point	closest	to	Oi-1.	The	point	Xi	is	
constructed	 on	 the	 line	 from	 Cαi	 to	 Cαi+1,	 at	
the	point	closest	 to	Oi.	The	ν	dihedral	 is	 then	
defined	using	the	positions	Oi-1,	Xi-1,	Xi,	Oi.	

Figure	1:	μin	(blue)	and	μout	(green)	pseudodihedrals	describe	Cα	trace	of	protein	backbone.	

	

	 52	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

4

CaBLAM	parameter	spaces	
Three	 parameter	 spaces	 are	 constructed	 from	
these	 parameters.	 In	 all	 three	 parameter	 spaces,	
μin	 is	 the	 x-axis	 and	 μout	 is	 the	 y-axis.	 The	 main	
CaBLAM	parameter	space	uses	ν	as	the	z-axis.	This	
space	 is	 used	 to	 identify	 CaBLAM	 outliers.	 A	
second,	Cα-only	space	uses	the	Cα	virtual	angle	as	
the	 z-axis.	 This	 space	 is	 used	 to	 identify	 Cα	
geometry	 outliers.	 The	 third	 and	 final	 parameter	
space	 is	 two-dimensional,	 consisting	 of	 only	 μin	
and	μout.	This	two-dimensional	space	
is	 used	 to	 identify	 secondary	
structure	elements.	

Contour	 levels	 for	 these	 parameter	
spaces	were	set	using	data	 from	the	
Top8000	 quality-filtered	 database.	
The	μin/μout/ν	space	uses	two-tiered	
cutoffs	 of	 1%	 for	 CaBLAM	 outliers	
and	 5%	 for	 CaBLAM	 disfavored,	
similar	 to	 the	 outlier	 and	 allowed	
cutoffs	 in	Ramachandran	space.	The	
μin/μout/Cα-virtual-angle	 space	 uses	
a	 single	 cutoff	 at	 0.5%	 for	 Cα	
geometry	 outliers.	 The	 2D	 μin/μout	
space	 uses	 a	 cutoff	 of	 0.1%	 for	
identifying	alpha	and	310	helix,	and	a	
cutoff	 of	 0.01%	 for	 identifying	 beta	
strand.	 The	 secondary	 structure	
behavior	 is	more	 cleanly	 defined	 in	
CaBLAM	 space	 than	 in	
Ramachandran	 space,	 resulting	 in	

5

steeper	 edges	 for	 the	 secondary	
structure	 distributions	 and	 allowing	
these	 lower	 cutoffs	 without	 introducing	
significant	false	positives.	

The	geography	of	the	CaBLAM	parameter	
spaces	 is	 easiest	 to	 understand	 starting	
with	 the	 2D	 μin/μout	 space	 and	 its	
secondary	 structure	 contours	 (figure	 3).	
These	 representations	 place	 0°	 at	 the	
center	 of	 each	 axis,	 with	 -180°	 at	 the	

Figure	2:	ν	pseudodihedral	describes	torsion	relation	between	adjacent	peptide	planes	across	the	Cα	of	
the	residue	of	interest.	

Figure	3:	The	2D	μin/μout	space	used	for	secondary	structure	
identification.	Cutoffs	for	alpha	helix	are	shown	in	orange,	
310	helix	in	purple,	and	beta	strand	in	blue.	

	

	 53	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

6

bottom/left	and	+180°	at	 the	top/right.	As	in	
the	 Ramachandran	 plot,	 the	 edges	 of	 this	
space	 wrap	 to	 the	 other	 side.	 The	 colored	
outlines	 in	 figure	 3	 show	 the	 cutoff	 contour	
levels	 for	 alpha	 helix	 (orange),	 310	 helix	
(purple),	 and	 beta	 strand	 (blue).	 Linear,	
elongated	 structures	 like	 beta	 strand	 are	
centered	 in	 the	 corners	 around	 ±180°.	 A	
completely	cis	Cα	conformation	–	that	is,	both	
µ	 dihedrals	 at	 0°	 –	 would	 fall	 at	 the	 very	
center	of	this	space.	 	Alpha	helix	is	elongated	
and	 twisted	 slightly	 from	 cis	 to	 permit	 its	
repetitive	 structure,	 and	 so	 the	 center	of	 the	
alpha	 helix	 distribution	 is	 somewhat	 up	 and	
to	 the	 right	 of	 center.	 310	 helix	 requires	
further	 elongation	 of	 the	 Cα	 trace	 to	 permit	
its	 tighter	 repeat	 pattern,	 and	 so	 its	 center	

7

falls	 further	 from	 cis	 than	 the	 alpha	 helix.	
Right-handed	 conformations	 like	 alpha	 and	
310	 helix	 result	 in	 positive	µ	 dihedral	 values,	
so	these	motifs	are	centered	up	and	right	from	
cis.	 	 Left-handed	 alpha	 would	 appear	 in	 the	
lower	left.	

These	 secondary	 structure	 contours	 also	
show	 transitional	 structures,	 most	 clearly	
evident	 in	 the	 alpha	 helix	 contours.	 	 The	
center	of	 the	alpha	helix	distribution	has	two	
long	arms,	a	continuous	arm	across	μin	and	a	
discontinuous	 arm	 along	 μout.	 These	 arms	
represent	 residues	with	 one	 helix-like	µ	 and	
one	 helix-unlike	 µ,	 that	 is,	 residues	 in	
transition	 between	 helix	 and	 another	
structure	 type	 such	 as	 N-	 and	 C-caps.	 The	
CaBLAM	 parameter	 space’s	 ability	 to	

represent	 transitional	
structures	 is	 both	 a	 benefit	 of	
the	system	and	a	challenge	that	
must	 be	 managed	 when	
interpreting	its	results.	

	The	3D	μin/μout/ν	 space	 (figure	
4)	is	dominated	by	the	common	
secondary	 structure	 elements,	
which	are	 further	differentiated	
by	 their	 distribution	 in	 the	 ν	
dimension.	 In	 beta	 structure,	
carbonyl	 oxygens	 alternate	
direction	along	the	strand,	near	
180°	 from	 each	 other,	 so	 beta	
strand	residues	are	clustered	in	
the	 corners	 of	 this	 space.	 	 In	
alpha	helix,	successive	carbonyl	
vectors	are	only	about	60°	away	
from	cis,	so	alpha	helix	residues	
cluster	 just	 above	 the	 center	 of	
the	 ν	 axis.	 	 Some	 new	 clusters	
become	 evident	 in	 the	 full	 3D	
space.	 The	 most	 interesting	 of	

Figure	4:	The	3D	μin/μout/ν	space	used	to	identify	CaBLAM	
outliers.	The	10%	contour	is	shown	in	blue	and	the	“disfavored”	
5%	contour	in	gray.	

	

	 54	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

9

extended	 and	 thus	 have	 larger	 Cα	 virtual	
angles	 than	 helices.	 At	 the	 contour	 level	
(0.5%)	 used	 for	 identifying	 outliers,	 virtually	
all	 μin/μout	 combinations	 are	 permitted.	
Therefore,	 most	 Cα	 geometry	 outliers	 are	
assumed	 to	 be	 problems	with	 the	 Cα	 virtual	
angle.	 Inspection	 of	 structures	 supports	 this	
assumption,	 as	 most	 Cα	 geometry	 outliers	
involve	 obviously	 too-extended	 or	 too-
constricted	Cα	virtual	angles.	

As	 in	 Ramachandran	 analysis,	 proline	
residues	 have	 a	 significantly	 more	 restricted	
distribution	than	the	general	case	and	glycine	
residues	have	a	significantly	more	permissive	
distribution.	 Proline	 and	 glycine	 therefore	
each	 have	 their	 own	 sets	 of	 3D	 contours	 for	
use	 in	 validation.	 Further	 subcategories	 of	

residue	 types	 are	 not	 currently	
defined	for	CaBLAM.	

Interpretation,	and	
assembly	of	secondary	
structure	
When	 CaBLAM	 validation	 is	
run,	 each	 residue	 is	 scored	
against	 the	 3D	 CaBLAM	
contours,	 the	 3D	 Cα	 contours,	
and	 the	 2D	 contours	 for	 alpha	
helix,	310	helix,	and	beta	strand.	
Residues	 that	 fall	 below	 the	
cutoffs	in	the	3D	CaBLAM	or	Cα	
spaces	 are	 marked	 as	 outliers.	
Residues	 that	 fall	 above	 the	
cutoffs	 for	 secondary	 structure	
become	 candidates	 for	
assembly	 into	 secondary	
structure	elements.	A	candidate	
residue	 is	 identified	 as	 beta	
strand	 if	 that	 residue	 and	 both	
the	 preceding	 and	 succeeding	

Figure	5:	3D	μin/μout/Cα	virtual	angle	space	used	to	identify	Cα	
geometry	outliers.	The	5%	contour	is	shown	in	blue	and	the	1%	
contour	in	gray.	

8

these	 are	 the	 clusters	 at	 the	 very	 center	 of	
each	 μ/ν	 face	 of	 the	 parameter	 space	 cube,	
seen	 most	 clearly	 on	 the	 μin/ν	 face	 at	 the	
bottom	of	 figure	 4.	 These	 clusters	 are	where	
beta	bulges	fall,	having	both	ν	and	one	μ	near	
cis.	 The	 distance	 between	 the	 beta	 strand	
clusters	 in	 the	 corners	 and	 the	 beta	 bulge	
clusters	 on	 the	 faces	 demonstrates	 the	
surprising	 distance	 that	 can	 occur	 between	
related	 structures	 in	 the	 CaBLAM	 parameter	
space.	

The	3D	μin/μout/Cα-virtual-angle	space	(figure	
5)	is	much	more	compressed,	because	the	Cα	
virtual	 angle	 for	 good	 data	 samples	 only	 a	
range	 of	 about	 70°-160°.	 Secondary	
structures	 are	 not	 distinctly	 visible	 in	 this	
distribution,	 although	 beta	 strands	 are	

	

	 55	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

11

with	 a	 validation	 class	 named	 cablamalyze	
that	 accepts	 a	 model	 hierarchy	 object	 plus	
some	other	arguments	for	controlling	amount	
and	 destination	 of	 output	 (sys.stdout,	 by	
default).	 The	cablamalyze	 object	 contains	 a	
list,	 cablamalyze.results,	 of	 validations	
for	 each	 residue.	 In	 a	 result	 object,	 the	
CaBLAM	 geometry	 parameters	 can	 be	 found	
in	 result.measures,	 the	 contour	 scores	 in	
each	parameter	space	in	result.scores	and	
the	assessment	of	whether	 that	 residue	 is	 an	
outlier	 and/or	 secondary	 structure	 in	
result.feedback.	 The	cablamalyze	 object	
contains	 functions	 to	 return	 various	
structure-level	 summary	 statistics	 such	 as	
available	 from	 the	 parent	 class	
percent_outliers() function.	 Another	
class	function,	as_secondary_structure(),	
will	 assemble	 CaBLAM	 validations	 into	
secondary	 structure	 elements	 and	 return	 a	
Phenix-compatible	 secondary	 structure	
annotation	object.	

Kinemage	markup	
CaBLAM	 provides	 three	 forms	 of	 visual	
markup	 for	 validation	 kinemages.	 The	 first	
two	 (figure	 6)	 mark	 outlier	 and	 disfavored	
residues	 in	 CaBLAM	 space.	 These	 markups	

10

residues	 all	 pass	 the	 beta	 strand	 cutoff.	
Helices	can	transition	between	alpha	and	310,	
so	 a	 candidate	 residue	 is	 identified	 as	 alpha	
helix	 if	 that	 residue	 passes	 the	 alpha	 helix	
cutoff,	and	both	the	preceding	and	succeeding	
residues	all	pass	either	the	alpha	or	310	helix	
cutoff.	A	candidate	residue	is	identified	as	310	
helix	 if	 it	 passes	 the	 310	 helix	 cutoff	 and	 it	
scores	 higher	 for	 310	 than	 for	 alpha	 plus	 at	
least	one	of	the	adjacent	residues	also	passes	
the	 310	 helix	 cutoff.	 If	 all	 of	 these	 conditions	
are	 met,	 identification	 as	 310	 will	 override	
identification	as	alpha.	

Adjacent	 residues	 that	 share	 the	 same	
secondary	 structure	 identification	 are	
assembled	 into	 secondary	 structures:	 alpha	
helix,	 310	 helix	 and	 beta	 strand.	 Individual	
beta	strands	are	not	currently	assembled	into	
beta	 sheets	 because	 proper	 registration	 of	
strands	 is	 challenging	 in	 structures	 where	
hydrogen	bonding	is	not	reliable.	

Accessing	CaBLAM	in	Phenix	
CaBLAM	 is	 accessible	 through	 the	
commandline	 as	 phenix.cablam.	 The	
commandline	accepts	a	single	PDB	or	mmCIF	
file.	 The	 default	output	 is	 a	 text	validation	of	
each	residue	in	the	structure,	plus	a	summary	
of	 the	 overall	 structure	 statistics.		
Other	 outputs	 can	 be	 accessed	
through	 the	 output=	 flag,	 the	
most	 significant	 of	 which	 are	
output=kin	 for	 printing	
CaBLAM’s	 kinemage	 markup	 and	
output=records	 for	 printing	
ksdssp-style	 HELIX	 and	 SHEET	
records.	

Internally,	 CaBLAM	 is	 structured	
similarly	 to	 our	 other	 validation	
scripts	 like	 ramalyze	 and	 rotalyze	

Figure	6:	Kinemage	markup	of	an	outlier	(pink)	or	disfavored	
(purple)	residue	traces	the	ν	dihedral	of	that	residue.	

	

	 56	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

12

trace	 the	 ν	 dihedral	 for	 the	 outlier	 or	
disfavored	 residue,	 as	 that	 is	 the	 geometry	
most	likely	to	be	in	error.		Disfavored	residues	
(bottom	 5%	 of	 reference-data	 protein	
behavior)	 are	 marked	 in	 purple	 and	 outlier	
residues	 (bottom	 1%	 of	 reference-data	
protein	behavior)	in	hot	pink.	

The	 third	 markup	 (figure	 7)	 shows	 Cα	
geometry	 outliers	 in	 the	 μin/μout/Cα-virtual-
angle	 space.	The	Cα	 geometry	markup	 is	 red	
and	 follows	 the	 Cα	 virtual	 angle	 that	 is	 both	
the	 measure	 unique	 to	 the	 Cα	 geometry	
validation	and	the	parameter	most	likely	to	be	

Figure	 7:	 Kinemage	 markup	 of	 Cα	 geometry	
outliers	follows	the	Cα	virtual	angle.	

13

in	error	in	a	Cα	geometry	outlier.	

Secondary	 structure	 annotations	 made	 by	
CaBLAM	 are	 not	 presented	 with	 visual	
markup	 as	 such.	 However,	 selecting	 any	
vertex	of	the	CaBLAM	or	Cα	geometry	markup	
will	 display	 text	 that	 includes	 the	 secondary	
structure	scores	for	that	residue	and	KiNG	can	
draw	 secondary	 structure	 ribbons	 based	 on	
HELIX	 and	 SHEET	 records	 generated	 by	
CaBLAM.	 The	 secondary	 structure	
annotations	 are	 designed	 to	 be	 conservative	
with	high	confidence	and	few	false	positives.	

Notes	on	best	usage	and	interpretation	
CaBLAM	 is	 bootstrapping	 up	 from	a	minimal	
form	 of	 information	 –	 the	 Cα	 trace	 –	 that	 is	
relatively	 reliable	 even	 in	 poor	 models.	 This	
makes	 CaBLAM	 invaluable	 in	 validating	
structures	that	other	methods	cannot	reliably	
assess.	 However,	 above	 a	 certain	 level	 of	
structure	 quality,	more	 sensitive	 and	 precise	
validations	 are	 likely	 to	 provide	 more	 value	
and	 nuance.	 In	 MolProbity,	 we	 currently	
approximate	 this	 level	 of	 structure	 quality	
with	a	resolution	cutoff	of	2.5Å,	 and	CaBLAM	
validation	 is	 automatically	 enabled	 for	
structures	at	this	resolution	or	worse.	

CaBLAM	 was	 designed	 to	 address	 a	 difficult	
problem	 –	 providing	 useful	 validation	 for	
structures	with	minimal	reliable	 information.	
As	 a	 result,	 some	 care	 must	 be	 taken	 in	
interpreting	 its	 feedback.	 CaBLAM	 uses	 two	
cutoffs	 to	 provide	 some	 nuance	 to	 its	
validation.	 	 The	 1%	 (outlier)	 cutoff	 misses	
some	clear	modeling	problems,	while	 the	5%	
(disfavored)	 cutoff	 includes	 some	motifs	 that	
are	 clearly	 real-but-rare.	 No	 single	 cutoff	
adequately	separates	good	structure	from	bad	
in	 CaBLAM	 space,	 so	 context	 becomes	 vital.	

	

	 57	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	51–57	

14

CaBLAM	 is	 overly	 sensitive	 in	 loop	 regions	
due	 to	 their	 high	 variability,	 so	 disfavored	
validations,	 and	 sometimes	 even	 outliers,	 in	
loops	 should	 be	 regarded	 only	 as	 general	
areas	 for	 improvement.	 However,	 regular	
regions,	 such	 as	 those	 in	which	 CaBLAM	 has	
identified	 secondary	 structure,	 disfavored	
validations	 do	 represent	 significant	
departures	 from	 expected	 protein	 behavior	
and	 should	 be	 taken	 as	 serious	 guides	 for	
improvement.	

15

The	 most	 generally	 useful	 model-rebuilding	
guidance	 to	 take	 from	 CaBLAM	 validation	 is	
to:		

1) build	 ideal	 secondary	 structure	 where	
annotated,	and		

2) try	 rotating	 peptides	 at	 one	 side	 or	 the	
other	of	a	CaBLAM	outlier	to	optimize	H-
bonding	 while	 avoiding	 steric	 clashes	
and	other	kinds	of	outliers.	

16

References	
Williams	CJ,	(2015)	Using	C-alpha	geometry	to	describe	protein	secondary	structure	and	motifs,	
Duke	University	PhD	dissertation,	248	pages.	

Williams	CJ,	Hintze	BJ,	Headd	JJ,	Moriarty	NW,	Chen	VB,	Jain	S,	Prisant	MG,	Lewis	SM,	Videau	LL,	
Keedy	DA,	Deis	LN,	Arendall	WB	III,	Verma	V,	Snoeyink	JS,	Adams	PD,	Lovell	SC,	Richardson	JS,	
Richardson	 DC	 (2018)	 MolProbity:	 More	 and	 better	 reference	 data	 for	 improved	 all-atom	
structure	validation,	Protein	Science	27:293-315.	

	

	

	 58	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	58–61	

	

1

Tools	for	interpreting	cryo-EM	maps	using	models	from	the	PDB	

	Tom	Terwilliger	
Los	Alamos	National	Laboratory,	Los	Alamos	NM	87545	
New	Mexico	Consortium,	100	Entrada	Dr,	Los	Alamos,	NM	87544	

Phenix	now	has	a	set	of	tools	for	finding	the	symmetry	in	a	cryo-EM	map,	cutting	out	the	unique	
part	 of	 a	 map	 and	 docking	 a	 model	 into	 a	 map.	 These	 tools	 now	make	 it	 easier	 for	 you	 to	
interpret	a	cryo-EM	map	using	existing	models	from	the	PDB.	

Finding	symmetry	in	a	map	with	phenix.map_symmetry	

The	phenix.map_symmetry	tool	is	designed	to	find	the	reconstruction	symmetry	used	to	create	a	
cryo-EM	 map	 and	 to	 write	 out	 a	 file	 containing	 the	 symmetry	 operators.	 The	 tool	 has	 an	
internal	database	 of	 common	 symmetries	 and	 it	quickly	 checks	 to	 see	which	 ones	match	 the	
map	that	you	supply.	It	makes	the	assumption	that	the	principal	axes	of	symmetry	often	match	
the	a,b,c	axes	of	your	map.	For	helical	symmetry,	the	tool	assumes	that	the	helix	is	along	the	z-
axis.	

You	can	run	the	map	symmetry	tool	with	a	simple	command	such	as:	

phenix.map_symmetry emd_8750.map symmetry=D7

This	will	 look	 for	D7	symmetry	(7-fold	 symmetry	about	z	 and	2-fold	 symmetry	about	x	 or	y)	
and	 it	 will	 report	 back	 the	 symmetry	 operators	 that	 match	 the	 map.	 You	 can	 leave	 off	 the	
symmetry=D7	keyword	and	the	map	symmetry	tool	will	look	for	all	types	of	symmetry.	

The	 symmetry	 operators	 that	 you	 find	 with	 phenix.map_symmetry	 can	 be	 useful	 later	 if	 you	
want	to	create	a	complete	molecule	from	one	component	chain.	You	might	want	to	do	this	if	you	
work	on	a	single	chain,	for	example.	You	can	create	the	entire	molecule	with:	

phenix.apply_ncs edited_chain_A.pdb symmetry_from_map.ncs_spec

This	command	will	apply	each	symmetry	operator	in	symmetry_from_map.ncs_spec	to	the	chain	
or	chains	in	edited_chain_A.pdb	and	create	a	new	model	with	all	these	chains.	New	chain	ID	will	
be	created	for	the	new	chains.	

Cutting	out	the	unique	part	of	a	map	
The	phenix.map_box	tool	is	a	multi-purpose	tool	that	allows	you	to	make	a	new	smaller	cryo-EM	
map	by	cutting	out	a	part	of	your	cryo-EM	map.	A	new	option	for	the	phenix.map_box	tool	is	to	
automatically	find	and	cut	out	the	unique	part	of	your	map.	All	you	need	to	supply	is	your	map,	
the	 resolution,	 the	 molecular	 mass	 of	 the	 contents	 of	 your	 map	 and	 the	 symmetry	 or	 a	
symmetry	file	with	your	symmetry	operators.	

The	way	this	works	 is	 the	phenix.map_box	 tool	 tries	 to	 find	a	 compact	part	of	your	map	that,	
including	your	symmetry	operators,	represents	the	whole	map.	This	is	done	by	first	finding	all	
the	regions	in	your	map	that	are	above	a	certain	contour	level,	then	finding	which	of	these	are	

	

	 59	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	58–61	

2

duplicated	by	the	map	symmetry	and	choosing	a	set	of	regions	that	is	unique	and	compact.	The	
method	is	described	in	Terwilliger	et	al.,	2018.	

Figure	1	shows	an	example	of	applying	the	map-box	tool	in	this	way.	The	map	is	the	deposited	
cryo-EM	map	of	groEL	(EMD	entry	8750)	and	the	command	used	is:	

phenix.map_box emd_8750.map extract_unique=true resolution=4 \

molecular_mass=1000000 symmetry=d7

Figure	1	shows	the	entire	map	in	purple	the	extracted	part	of	the	map	in	yellow.	The	extracted	
part	 very	 closely	 matches	 chain	 G	 of	 the	 model	 for	 this	map	 (pictured	 in	 Fig.	 1;	 PDB	 entry	
5w0s).	

Docking	a	model	into	a	cryo-EM	map	
You	can	dock	a	model	into	a	cryo-EM	map	using	the	new	Phenix	tool,	phenix.dock_in_map.	This	
tool	 finds	 the	 translation	and	 rotation	 that	best	matches	 your	model	 to	 the	map.	 If	 you	have	

Figure	1	

	

	 60	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	58–61	

3

more	than	one	model,	or	want	to	fit	more	than	one	copy	of	your	model	in	the	map,	you	can	do	
those	things	as	well.	

The	phenix.dock_in_map	tool	often	can	find	the	 location	of	your	model	very	quickly	because	 it	
first	uses	low-resolution	representations	of	your	model	and	the	map	to	find	the	placement	and	
orientation	of	the	model.	Then	if	the	placement	is	satisfactory,	real-space	rigid-body	refinement	
is	carried	out	using	the	full	resolution	of	the	map	to	optimize	the	placement	of	the	model.	

If	 you	are	 placing	more	 than	 one	model,	 the	 density	 for	all	 previously	 placed	models	 is	 first	
removed	from	the	map,	then	a	search	is	carried	out	for	 the	next	model	to	be	placed.	This	can	
allow	you	to	construct	a	complex	molecule	from	its	parts.	

Figure	2	shows	how	you	can	dock	a	model	of	groEL	for	chain	A	from	the	PDB	entry	1ss8	into	
the	deposited	full	cryo-EM	map	shown	in	purple	in	Fig.	1.	The	command	used	is:	

phenix.dock_in_map 1ss8_A.pdb emd_8750.map resolution=4 nproc=4 \

pdb_out=placed_model_from_emd_8750.pdb

Figure	2	

	

	 61	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	58–61	

4

In	 figure	2	you	can	see	the	density	 for	 the	groEL	map	 in	pink	and	the	docked	model	for	1ss8	
chain	A	in	blue.	

You	 can	 do	 all	 these	 things	 yourself	 in	 a	 few	minutes	 using	 the	 instructions	 and	 data	 in	 the	
tutorial	called	"groel_dock_refine".	

Reference:	
Terwilliger,	T.C.,	Adams,	P.D.,	Afonine,	P.V.,	Sobolev,	O.V.(2018).	"Map	segmentation,	automated	
model-building	 and	 their	 application	 to	 the	 Cryo-EM	 Model	 Challenge"	 BioRxiv	 doi:	
https://doi.org/10.1101/310268	

	

	

	

	 62	Computational	Crystallography	Newsletter	(2018).	9,	62–73	

ARTICLES

1

Using	the	New	Program	Template	
Billy	K.	Poon	

Molecular	Biophysics	and	Integrated	Bioimaging	Division,	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	94720,	
USA	

Correspondence	email:	BKPoon@lbl.gov	

2

Introduction	

To	help	unify	the	command-line	and	graphical	
interfaces	 for	 CCTBX-based	 programs	 (e.g.	
Phenix),	a	new	approach	based	on	a	program	
template	 is	 introduced.	 This	 approach	
provides	 some	 consistent	 functionality	 for	
basic	 tasks,	 like	 file	 and	 parameter	 handling,	
as	 well	 as	 helps	 ensure	 that	 the	 same	 exact	
code	 is	 executed	 regardless	 of	 the	 user	
interface.	

At	a	high	level,	this	new	approach	is	based	on	
the	 Model-View-Controller	 (MVC)	 design	
pattern,	 probably	 first	 introduced	 by	 Trygve	
Reenskaug	 at	 Xerox	 PARC	 in	 the	 late	 1970’s	
[1,	 2].	 Generally,	 the	 end	 user	 interacts	with	
the	 View,	 which	 can	 be	 the	 command-line	
terminal	 or	 a	 graphical	 user	 interface	 (GUI).	
The	 Controller	 serves	 as	 a	 translation	 layer	
that	 can	 convert	 the	 user	 interactions	 into	
something	the	Model	uses	for	the	actual	work	
and	 can	 convert	 the	 output	 from	 the	 Model	
into	 something	 displayed	by	 the	View	 that	 is	
understandable	 by	 the	 end	 user.	 In	 this	 new	
approach,	 the	 Model	 is	 the	 core	 library	
functionality	of	CCTBX	that	developers	use	for	
calculations,	the	View	is	the	command-line	or	
GUI	 that	 end	 users	 interact	 with,	 and	 the	
Controller	is	composed	of	several	new	classes	
that	 more	 clearly	 define	 the	 boundary	
between	the	user	and	the	underlying	scientific	
code.	These	classes	are	the	DataManager	that	
keeps	 track	 of	 the	 mapping	 between	 user-
provided	 data	 files	 and	 the	 resulting	 CCTBX	
data	 structures	 that	 developers	 manipulate,	
the	ProgramTemplate	that	explicitly	defines	a	

3

series	 of	 steps	 that	 a	 program	 goes	 through,	
and	 the	 CCTBXParser	 that	 provides	 a	
consistent	 command-line	 interface	
(resoectively?).	 Figure	 1	 summarizes	 the	
relationships	 between	 the	MVC	 and	 the	 new	
classes.	

Generally,	 the	 CCTBXParser	 takes	 command-
line	 input	 from	 the	 user	 to	 construct	 a	
DataManager	 object	 that	 contains	 the	 input	
data	 (e.g.	 files)	 and	 the	 regular	 PHIL	 scope	

Figure	 1:	 	 Model-View-Controller	 design	 pattern	
and	 new	 classes.	 User	 input	 from	 the	 command-
line	 is	 translated	 by	 the	 CCTBXParser	 into	
DataManager	and	PHIL	objects,	which	are	used	to	
create	 a	 program	 object	 based	 on	 the	
ProgramTemplate.	 The	 program	 then	 calls	 core	
CCTBX	 functions	 to	 do	 work	 before	 reporting	
output	back	to	the	user.	

Vi
ew
	

Command-line	

Graphical	interface	

Co
nt
ro
lle
r	

CCTBXParser	

DataManager	and	PHIL	

ProgramTemplate	

M
od
el
	

Core	CCTBX	algorithms	

	

	 63	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	
	

4

extract	 object	 that	 contains	 program	
parameters	 (e.g.	 resolution=2.0).	 These	 two	
objects	are	then	used	to	construct	an	instance	
of	a	program	based	on	the	ProgramTemplate	
since	they	fully	define	a	job.	Once	instantiated,	
standard	 function	 names	 defined	 in	 the	
ProgramTemplate	 are	 called	 to	 perform	 the	
actual	 work	 and	 display	 output	 to	 the	
terminal.	 A	 new	 graphical	 interface	 is	 under	
development	 that	 utilizes	 the	 DataManager	
and	ProgramTemplate	classes	and	will	be	the	
graphical	equivalent	to	the	CCTBXParser.	

New	Classes:	

To	help	 familiarize	 developers	with	 this	 new	
approach,	 there	 is	 a	 description	 of	 each	 new	
class	 below	 with	 some	 code	 samples.	 These	
code	 samples	 are	 part	 of	 a	 non-trivial	
program	(EMRinger)	 that	was	reorganized	to	
adopt	this	approach.	Figures	2	and	3	show	the	
full	 source	 code	 for	 the	 program	 class	
(mmtbx/programs/emringer.py)	 and	 a	
minimal	 version	 of	 the	 command-line	 tool	
(mmtbx/command_line/emringer.py),	
respectively.	

ProgramTemplate	(libtbx/program_template.py):	

The	 ProgramTemplate	 class	 should	 be	 the	
parent	 class	 for	 future	 CCTBX	 programs.	 A	
program	 is	narrowly	defined	as	any	tool	 that	
is	made	 available	 to	 the	 user.	 That	 is,	 a	 user	
provides	 some	 form	 of	 input,	 either	 files	
and/or	parameters,	 and	the	program	returns	
some	sort	of	output	 for	 the	user.	To	perform	
this	 function,	 the	 program	 is	 broken	 up	 into	
discrete	 stages,	 listed	 below	 with	 their	
associated	function	names.	

1. Initialization	 (__init__)	 –	 This	 is	 the	 normal	
constructor	 for	 a	 class.	The	 required	 inputs	
include	 a	 DataManager	 object	 and	 a	 PHIL	
extract	object.	These	 two	objects	 define	 the	

5

input	 data	 and	 input	 parameters,	
respectively.	 The	 constructor	 is	 predefined	
in	the	ProgramTemplate	class	and	generally	
should	 not	 be	 overwritten	 by	 children	
classes.	 There	 are	 optional	 parameters	 for	
the	master	PHIL	(master_phil)	and	a	logging	
object	 (logger),	 but	 they	 are	 automatically	
filled	 in	 by	 CCTBXParser	 (and	 the	 future	
GUI).	The	constructor	basically	 just	 sets	 the	
arguments	 to	 attributes	 of	 the	 instance	
(self.data_manager,	 self.master_phil,	
self.params,	self.logger).	

2. Custom	 initialization	 (custom_init)	–	This	 is	
an	 optional	 function	 that	 is	 called	 after	 the	
normal	 constructor	 to	 do	 any	 custom	
initialization.	Generally,	 this	 is	 not	 required	
because	 the	 initialization	 step	 should	 be	
lightweight	and	not	do	any	actual	work.	

3. Input	 validation	 (validate)	 –	 This	 step	 is	
required	 and	 validates	 the	 input	 provided	
by	 the	 user.	 Since	 the	 DataManager	 object	
and	 PHIL	 object	 are	 stored	 in	
self.data_manager	 and	 self.params,	
respectively,	 the	 developer	 can	 check	 if	
there	 is	 sufficient	 information	 to	 proceed.	
For	example,	in	Figure	2,	the	validate	step	is	
highlighted	pale	blue.	

The	EMRinger	program	takes	a	model	and	a	
map	 and	 calculates	 a	 score	 for	determining	
the	 correct	 sidechain	 position	 [3,	 4].	 To	 do	
this,	 a	 model	 and	 some	 form	 of	 map	 (real	
map	or	map	 coefficients)	 are	 required.	 The	
DataManager	object	is	used	to	check	for	the	
existence	 of	 necessary	 data	
(self.data_manager.has_models,	
self.data_manager.has_real_maps,	 and	
self.data_manager.has_map_coefficients),	
but	also	checks	that	only	one	kind	of	map	is	
provided.	 The	 DataManager	 contains	 some	
basic	 functions	for	 these	checks	and	will	be	
described	 in	 greater	 detail	 later.	 There	 are	
no	 checks	 for	 parameters	 because	 the	
default	 values	 are	 fine,	 but	 if	 some	
parameter	 is	 required,	 the	 check	 should	 be	
done	here.	For	example,	 if	a	map	resolution	

Figure	2:		Comparison	of	"bullseye"	plots	of	Cβ	deviation	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

Figure	3:		Comparison	of	Leu	204	rotamer	outlier	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

	

	 64	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

1

from __future__ import division, print_function
try:
 from phenix.program_template import ProgramTemplate
except ImportError:
 from libtbx.program_template import ProgramTemplate
import os
import libtbx.phil
from libtbx.utils import Sorry
from libtbx import easy_pickle
import mmtbx.ringer.emringer
===
program_citations = libtbx.phil.parse('''
citation {
 article_id = emringer1
 authors = Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser JS
 title = Side-chain-directed model and map validation for 3D Electron Cryomicroscopy.
 journal = Nature Methods
 volume = 10
 pages = 943-46
 year = 2015
 doi_id = "10.1038/nmeth.3541"
 pmid = 26280328
 external = True
}
citation {
 article_id = emringer2
 authors = Lang PT, Ng HL, Fraser JS, Corn JE, Echols N, Sales M, Holton JM, Alber T
 title = Automated electron-density sampling reveals widespread conformational polymorphism in ...
…
}
''')
===
master_phil_str = '''
include scope libtbx.phil.interface.tracking_params
include scope mmtbx.ringer.emringer.master_params
map_label = 2FOFCWT,PH2FOFCWT
 .type = str
 .input_size = 200
 .short_caption = 2Fo-FC map labels
 .help = Labels for 2Fo-Fc map coefficients
show_gui = False
 .type = bool
output_base = None
 .type = str
output_dir = None
 .type = path
 .short_caption = Output directory
quiet = False
 .type = bool
 .short_caption = no graphs
 .help = Don't output files or graphs
'''
===

class Program(ProgramTemplate):
 description = '''
Program for calculating the EMRinger score.

Minimum required inputs:
 Model file

Figure	2:	Program	class	for	EMRinger	(mmtbx/programs/emringer.py)	

	

	 65	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

2

 Map file (or file with map coefficients)

How to run:
 phenix.emringer model.pdb map.ccp4
'''
 datatypes = ['model', 'real_map', 'phil', 'map_coefficients']
 citations = program_citations
 master_phil_str = master_phil_str
 # ---
 def validate(self):
 print('Validating inputs', file=self.logger)
 self.data_manager.has_models(raise_sorry=True)
 if not (self.data_manager.has_real_maps() or
 self.data_manager.has_map_coefficients()):
 raise Sorry("Supply a map file or a file with map coefficients.")
 elif (self.data_manager.has_real_maps() and
 self.data_manager.has_map_coefficients()):
 raise Sorry("Supply either a map file or a file with map coefficients.")
 # ---
 def run(self):
 map_inp = None
 miller_array = None

 print('Using model: %s' % self.data_manager.get_default_model_name(),
 file=self.logger)
 model = self.data_manager.get_model()

 if self.data_manager.has_map_coefficients():
 miller_arrays = self.data_manager.get_miller_arrays()
 miller_array = self.find_label(miller_arrays = miller_arrays)
 print('Using miller array: %s' % miller_array.info().label_string(),
 file=self.logger)
 elif self.data_manager.has_real_maps():
 print('Using map: %s' % self.data_manager.get_default_real_map_name(),
 file=self.logger)
 map_inp = self.data_manager.get_real_map()
 print("CCP4 map statistics:", file=self.logger)
 map_inp.show_summary(out=self.logger, prefix=" ")

 if (self.params.output_base is None) :
 pdb_base = os.path.basename(self.data_manager.get_default_model_name())
 self.params.output_base = os.path.splitext(pdb_base)[0] + "_emringer"

 if not self.params.quiet:
 plots_dir = self.params.output_base + "_plots"
 if (not os.path.isdir(plots_dir)) :
 os.makedirs(plots_dir)

 task_obj = mmtbx.ringer.emringer.emringer(
 model = model,
 miller_array = miller_array,
 map_inp = map_inp,
 params = self.params,
 out = self.logger)
 task_obj.validate()
 task_obj.run()
 self.results = task_obj.get_results()

 ringer_result = self.results.ringer_result

 if not self.params.quiet:
 # save as pickle

Figure	2:	Program	class	for	EMRinger	(mmtbx/programs/emringer.py)	(continued)	

	

	 66	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

Figure	2:	Program	class	for	EMRinger	(mmtbx/programs/emringer.py)	(continued)	

3

 easy_pickle.dump("%s.pkl" % self.params.output_base, ringer_result)
 print ('Wrote %s.pkl' % self.params.output_base, file=self.logger)
 # save as CSV
 csv = "\n".join([r.format_csv() for r in ringer_result])
 open("%s.csv" % self.params.output_base, "w").write(csv)
 print ('Wrote %s.csv' % self.params.output_base, file=self.logger)

 scoring_result = self.results.scoring_result
 scoring_result.show_summary(out = self.logger)

 #rolling_result = self.results.rolling_result

 # It would be good to have central code for this
 # ---
 def find_label(self, miller_arrays):
 best_guess = None
 best_labels = []
 all_labels = []
 miller_array = None
 for array in miller_arrays:
 label = array.info().label_string().replace(" ", "")
 if (self.params.map_label is not None):
 if (label == self.params.map_label.replace(" ", "")):
 miller_array = array
 return miller_array
 elif (self.params.map_label is None):
 if (array.is_complex_array()):
 all_labels.append(label)
 if (label.startswith("2FOFCWT") or label.startswith("2mFoDFc") or
 label.startswith("FWT")) :
 best_guess = array
 best_labels.append(label)
 if (miller_array is None):
 if (len(all_labels) == 0) :
 raise Sorry("No valid (pre-weighted) map coefficients found in file.")
 elif (len(best_labels) == 0) :
 raise Sorry("Couldn't automatically determine appropriate map labels. "+
 "Choices:\n %s" % " \n".join(all_labels))
 elif (len(best_labels) > 1) :
 raise Sorry("Multiple appropriate map coefficients found in file. "+
 "Choices:\n %s" % "\n ".join(best_labels))
 elif (len(best_labels) == 1):
 miller_array = best_guess
 print(" Guessing %s for input map coefficients"% best_labels[0],
file=self.logger)
 return miller_array

 # ---
 def get_results(self):
 return self.results

Figure	3:	Command-line	tool	for	EMRinger	(cut	from	mmtbx/command_line/emringer.py)	

LIBTBX_SET_DISPATCHER_NAME phenix.emringer
from __future__ import division, print_function

from iotbx.cli_parser import run_program
from mmtbx.programs import emringer

if __name__ == '__main__':
 run_program(program_class=emringer.Program)

	

	 67	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

6

is	required,	the	code	could	look	like	

The	goal	of	this	step	is	to	do	a	quick	check	of	
the	user-supplied	inputs	to	determine	if	it	is	
possible	to	do	the	desired	work.	

4. Run	 calculation	 (run)	 –	 This	 step	 is	 also	
required	 and	 does	 the	 actual	 calculation.	
This	 is	 program-specific,	 so	 it	 can	 be	 as	
simple	 or	 complex	 as	 necessary	 to	 do	 the	
work.	 For	 EMRinger,	 another	 class	 is	
constructed	 to	 do	 the	 calculation.	 This	
brings	up	 the	 important	distinction	 that	 the	
program	 is	 separate	 from	 core	 algorithmic	
functionality.	 The	 program,	 narrowly	
defined	again	as	a	 tool	exposed	 to	 the	user,	
should	 call	 core	 classes/functions	 to	 do	
calculations.	 The	 core	 classes/functions	
should	 not	 call	 programs.	 Additionally,	 log	
output	 can	 be	 sent	 to	 self.logger,	 which	 is	
normally	a	libtbx.utils.multi_out	object.	

5. Clean	 up	 (clean_up)	 –	 This	 is	 an	 optional	
function	for	cleaning	up	any	temporary	files	
that	may	have	been	created.	

6. Get	 results	 (get_results)	 –	 By	 default,	
None	 is	 returned,	 but	 this	 function	 can	 be	
used	 to	 return	 anything	 of	 interest.	 This	
function	 will	 be	 important	 for	 the	 new	
graphical	interface	because	this	function	will	
be	 used	 for	 determining	 the	 output	 to	 be	
displayed.	

The	 ProgramTemplate	 defines	 a	 standard	
sequence	of	steps	that	programs	should	use	to	
do	 something	 for	 the	 user.	 The	 steps	 should	
be	 generic	 enough	 for	 any	 task,	 but	 by	
explicitly	 defining	 these	 steps,	 we	 can	
standardize	the	behavior	of	user	interfaces.	

Furthermore,	 the	 class	 for	 a	 program	 should	
encapsulate	 all	 relevant	 information	 about	
itself.	 To	 that	 end,	 the	 ProgramTemplate	
defines	several	class	variables	for	storing	that	
information.	Some	basic	ones	are	listed	below.	

7

1. description	–	This	is	a	text	description	about	
the	 program.	 This	 will	 be	
shown	 as	help	 text	 to	 the	user,	
so	 some	 basic	 information	

about	required	files	is	useful.	
2. datatypes	 –	 This	 is	 a	 list	 of	 data	 types	

recognized	 by	 the	 DataManager.	 For	
EMRinger,	 the	 line	 from	 figure	 2	 is	
highlighted	in	pale	orange.	

This	 list	 is	used	to	construct	a	DataManager	
object	for	EMRinger	that	will	only	recognize	
model	 files	 (PDB	 or	 CIF),	 real-space	 maps,	
PHIL	 files,	 and	 map	 coefficients	 (MTZ	 or	
CIF).	 If	 some	 other	 kind	 of	 file	 is	 supplied,	
the	DataManager	will	not	be	able	to	process	
it.	 The	 CCTBXParser	 takes	 this	 information	
and	 displays	 output	 about	 which	 files	 are	
recognized	and	which	files	are	not	used.	The	
goal	 is	 to	 inform	 the	 user	 of	 any	 extra	 files	
that	have	no	effect	in	the	program.	

3. master_phil_str	–	This	is	the	regular	text	that	
defines	 the	 PHIL	 scope	 for	 a	 program.	 The	
include	 keyword	 is	 processed,	 so	 the	
program’s	PHIL	scope	can	be	constructed	as	
a	collection	of	other	PHIL	scopes.	

4. citations	 –	 This	 is	 a	 PHIL	 scope	 object	 that	
contains	 a	 list	 of	 citations	 following	 the	
format	defined	in	 libtbx/citations.py.	This	 is	
useful	 for	 citations	 that	 do	 not	 exist	 in	 the	
central	 citation	 database	
(libtbx/citations.params).	For	EMRinger,	the	
citations	are	created	by	parsing	a	text	string,	
as	shown	in	figure	2	slightly	truncated	from	
the	actual	file	and	highlight	in	pale	green.	

5. known_article_ids	 –	 This	 is	 a	 list	 of	 known	
citations.	The	known	article	ids	are	stored	in	
libtbx/citations.params.	 This	 class	 variable,	
along	 with	 the	 citations	 class	 variable,	 are	
used	 to	 construct	 a	 list	 of	 citations	 for	 the	
program.	

6. epilog	–	This	is	a	text	string	that	is	shown	at	
the	end	of	help	screen	on	the	command-line.	
For	 CCTBX,	 it	 is	 defined	 as	 shown	 on	 the	
next	page.		

if self.params.resolution is None:
 raise Sorry(“Supply a resolution for the map”)

	

	 68	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

8

Since	 the	 ProgramTemplate	 is	 just	 a	 class,	
other	 CCTBX-based	 projects	 can	 subclass	
this	 class	 and	 redefine	 any	 defaults.	 For	
example,	 Phenix	 redefines	 the	 epilog	 and	
changes	 the	email	address	 to	 help@phenix-
online.org.	

When	 combined	 with	 the	 other	 new	 classes,	
the	 ProgramTemplate	 organizes	 programs	
into	 a	 consistent	 format	 with	 information	 in	
predefined	categories.	This	helps	ensure	 that	
users	 get	 a	 consistent	 interface.	 Also,	 the	
standard	 location	 for	 programs	 is	
<project>/programs.	 So	 for	 the	 mmtbx	
subproject,	 the	 programs	 exist	 in	
mmtbx/programs.	 This	 is	 separate	 from	 the	
<project>/command_line	 directory,	 which	
will	 only	 contain	 the	 command-line	 interface	
for	these	programs.	

DataManager	(iotbx/data_manager/):	

The	DataManager	maps	 files	provided	by	 the	
user	 to	 CCTBX	 data	 structures	 used	 by	
developers.	 The	 class	 handles	 file	 reading	 so	
developers	 do	 not	 have	 to	 worry	 about	
reading	 files	 and	 trapping	 IOError	 for	 errors	
in	accessing	files.	Files	are	categorized	by	data	
types,	which	 are	basically	 the	 type	of	data	 in	
the	 file	 (e.g.	 models,	 sequences,	 reciprocal-
space	 data,	 real	 space	maps,	 etc.).	 Currently,	
the	data	types	recognized	by	DataManager	are	
listed	below.	

1. model	–	model	files	(PDB	or	CIF)	
2. phil	–	PHIL	files	(text)	
3. sequence	–	sequence	files	(most	formats)	
4. restraint	–	restraint	files	(CIF)	
5. ncs_spec	–	NCS	files	(text)	
6. real_map	–	real-space	maps	(CCP4	format)	

9

7. miller_array	 –	 general	 reciprocal-space	
data	(most	formats,	e.g.	MTZ,	CIF,	…)	

8. map_coefficients	–	subclass	of	miller_array	
that	has	known	labels	for	map	coefficients	

There	 are	 other	 data	 types	 in	 development,	
specifically,	 more	 subclasses	 for	 miller_array	
to	 handle	 intensities,	 amplitudes	 and	 other	
reciprocal	space	data.	

This	class	also	introduces	the	idea	of	a	default	
file,	 or	 the	 first	 file	 encountered	of	 each	 data	
type.	For	programs	that	only	need	one	file	of	a	
specific	 type,	 developers	 do	 not	 need	 to	
specify	 a	 PHIL	 parameter	 for	 that	 file.	 For	
more	 complicated	 situations	 where	 files	 and	
parameters	 need	 to	 be	 mapped	 to	 one	
another,	using	PHIL	parameters	to	define	that	
mapping	 is	 still	 required.	 In	 the	 EMRinger	
program,	 only	 a	 model	 and	 a	 map	 are	
required,	 so	 instead	of	having	 to	 define	PHIL	
parameters	 for	 each	 file,	 the	 first	 model	 is	
recognized	as	 the	default	model	 and	 the	 first	
map	 is	 recognized	 as	 the	 default	 map.	 Since	
the	validate	step	(shown	in	the	above	section)	
checks	 that	 only	 either	 real-space	 maps	 or	
map	coefficients	are	provided,	there	is	no	case	
where	there	is	a	default	real-space	map	and	a	
default	map	coefficients	 file.	In	 the	event	that	
multiple	 files	 of	 the	 same	 type	 are	 provided,	
the	 EMRinger	 program	 displays	 which	 files	
are	 used	 in	 its	 analysis.	 Furthermore,	 the	
description	in	the	EMRinger	program	informs	
the	 user	 that	 one	model	 and	 one	 map	 (real-
space	or	map	coefficients)	are	the	inputs.	

The	 DataManager	 also	 defines	 a	 set	 of	
functions	for	each	data	type	to	access	the	data	
structures.	Some	basic	functions	for	the	model	
data	 type	 are	 listed	 below,	 but	 the	 “model”	

epilog = '''
For additional help, you can contact the developers at cctbx@cci.lbl.gov

'''

	

	 69	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

10

part	can	be	replaced	with	any	other	data	type	
(e.g.	get_real_map	instead	of	get_model).	

1. add_model(filename,	 data)	 –	 creates	 an	
entry	 for	 <filename>	 that	 is	 associated	 to	
<data>	

2. set_default_model(filename)	 –	 sets	
<filename>	as	the	default	for	that	data	type	

3. get_model(filename)	 –	 returns	 the	 <data>	
associated	with	<filename>.	If	<filename>	is	
not	provided,	the	default	is	returned.	

4. get_model_names	 –	 returns	 a	 list	 of	 known	
filenames	for	that	data	type	

5. get_default_model_name	 –	 returns	 the	
default	<filename>	for	that	data	type	

6. has_models(expected_n=1,	
exact_count=False,	 raise_sorry=False)	 –	
returns	 True	 or	 False.	 The	 expected_n	
parameter	 can	be	 changed	 to	 the	minimum	
number	 of	 items	 expected.	 If	 exact_count	 is	
set	to	True,	the	number	of	items	has	to	equal	
expected_n	 for	 True	 to	 be	 returned.	 If	
exact_count	 is	 set	 to	 True,	 an	 error	
(libtbx.utils.Sorry)	 is	 raised	 instead	 of	
returning	False.	This	is	useful	in	the	validate	
step	of	the	ProgramTemplate	for	checking	if	
the	expected	data	exist.	

7. process_model_file(filename)	 –	 tries	 to	 read	
<filename>	and	 store	 the	 associated	<data>	
from	the	file	

Some	 data	 types	 may	 also	 have	 other	
functions	 specific	 for	 that	 data	 type.	 To	 see	
the	full	list	of	available	functions	for	each	data	
type,	 the	 source	 code	 can	 be	 browsed	 in	 the	
iotbx/data_manager	 directory.	 There	 is	 a	 file	
for	each	data	type	where	the	name	is	the	data	
type	name	(e.g.	model.py	for	the	“model”	data	
type).	

For	general	developers,	the	DataManager	will	
already	exist	 and	populated	with	data,	so	the	
main	 functions	 for	 interacting	 with	 the	
DataManager	 are	 get_model,	
get_model_names,	 get_default_model_name,	
and	 has_models	 and	 their	 equivalents	 for	

11

other	data	types.	These	 functions	provide	the	
basic	 means	 for	 getting	 the	 data	 structures	
and	the	filenames	used	for	creating	those	data	
structures.	

CCTBXParser	(iotbx/cli_parser.py):	

The	CCTBXParser	is	the	standard	interface	for	
parsing	 command-line	 input	 into	
DataManager	and	PHIL	 objects	 for	 creating	a	
program	 (subclass	 of	 ProgramTemplate)	
object.	 This	 parser	 is	 a	 subclass	 of	 the	
standard	 Python	 class,	
argparse.ArgumentParser,	 that	 is	 used	 for	
parsing	 command-line	 arguments.	 There	 is	
another	 standard	 Python	 parser,	
optparse.OptionParser,	 but	 that	 module	 is	
deprecated.		

The	only	required	argument	for	CCTBXParser	
is	 the	 program	 class	 and	 the	 parser	will	 pull	
the	relevant	 information	defined	 in	that	class	
to	 build	 a	 standard	 command-line	 interface.	
For	 example,	 when	 a	 user	 runs	
phenix.emringer	 on	 the	 command-line,	 the	
default	output	is	shown	in	schema	1.	

The	 description	 class	 variable	 in	 figure	 2	 is	
shown	 by	 the	 parser	 as	 help	 text	 and	 the	
epilog	class	variable	from	the	Phenix	subclass	
of	 the	ProgramTemplate	 is	shown	at	 the	end.	
If	 Phenix	 were	 not	 available,	 the	 standard	
ProgramTemplate	 in	 libtbx	 will	 be	 used	 and	
that	epilog	will	be	displayed	instead.	

The	 CCTBXParser	 class	 also	 defines	 a	 set	 of	
default	 command-line	 flags.	 They	 are	
explained	in	the	default	output,	but	generally,	
the	flags	are	related	to	showing	and	saving	the	
parameters	 in	 the	 program,	 overwriting	
existing	 files	 (e.g.	 PHIL	 parameter	 files)	 and	
showing	 citations.	 Any	 program-specific	
setting	 should	 not	 be	 a	 command-line	 flag;	
they	should	be	PHIL	parameters.	This	ensures	
that	 settings	 can	 be	 encapsulated	 in	 files,	

	

	 70	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

[bkpoon@eeyore:~] phenix.emringer
usage: phenix.emringer [-h] [--show-defaults [{0,1,2,3}]]
 [--attributes-level [{0,1,2,3}]] [--write-data]
 [--write-modified] [--write-all] [--overwrite]
 [--citations [{default,cell,iucr}]]
 [files [files ...]] [phil [phil ...]]

Program for calculating the EMRinger score.

Minimum required inputs:
 Model file
 Map file (or file with map coefficients)

How to run:
 phenix.emringer model.pdb map.ccp4

positional arguments:
 files Input file(s) (e.g. model.cif)
 phil Parameter(s) (e.g. d_min=2.0)

optional arguments:
 -h, --help show this help message and exit
 --show-defaults [{0,1,2,3}], --show_defaults [{0,1,2,3}]
 show default parameters with expert level (default=0)
 --attributes-level [{0,1,2,3}], --attributes_level [{0,1,2,3}]
 show parameters with attributes (default=0)
 --write-data, --write_data
 write DataManager PHIL parameters to file
 (emringer_data.eff)
 --write-modified, --write_modified
 write modifed PHIL parameters to file
 (emringer_modified.eff)
 --write-all, --write_all
 write all (modified + default + data) PHIL parameters
 to file (emringer_all.eff)
 --overwrite overwrite files, this overrides the output.overwrite
 PHIL parameter
 --citations [{default,cell,iucr}]
 show citation(s) for program in different formats

For additional help, you can contact the developers at help@phenix-online.org
[bkpoon@eeyore:~]

Schema	1:	Default	output	of	EMRinger.	

12

which	will	help	with	reproducibility	of	results.	
By	 making	 these	 options	 standard	 for	 all	
programs	 based	 on	 the	 ProgramTemplate,	
users	 will	 more	 easily	 find	 the	 parameters	
available	to	them	and	be	able	to	save	them.	In	
fact,	 the	 --write-all	 flag	will	 save	all	 the	PHIL	
parameters	 and	 when	 given	 to	 the	 program,	
will	reproduce	a	previous	run.	

Also	 by	 default,	 the	 parser	will	 look	 for	 files	
and	 PHIL	 parameters	 (positional	 arguments)	

13

since	 these	 are	 common	 inputs	 to	 CCTBX-
based	programs.	Furthermore,	the	parser	will	
recognize	 any	 PHIL	 files	 and	 apply	 the	
settings	stored	 in	these	 files.	And	 if	 there	are	
any	filenames	(path	PHIL	type)	in	 these	PHIL	
files,	 the	 files	 will	 automatically	 be	 added	 to	
the	 DataManager.	 However,	 this	 is	 not	
recursive;	that	 is,	 if	the	PHIL	 file	provided	on	
the	 command-line	 contains	a	path	 parameter	
with	a	PHIL	file,	this	PHIL	file	will	be	added	to	
the	DataManager,	 but	 any	parameters	 in	 this	

	

	 71	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

15

This	 means	 that	 the	 general	 developer	 can	
just	 focus	 on	 writing	 the	 program	 class	 as	 a	
child	class	of	 the	ProgramTemplate	class	and	
use	run_program	to	get	a	working	command-
line	tool	with	all	the	features	outlined	above.	

Future	Work:	

While	 the	 command-line	 version	 is	 working	
right	 now,	 there	 are	 other	 features	 in	
development	 to	 further	 improve	 consistency	

and	 simplify	 development	 of	 programs.	 The	
main	one	is	a	GUI	equivalent	to	CCTBXParser.	
Because	 the	 constructor	 for	 programs	 only	
requires	 a	 DataManager	 and	 a	 PHIL	 object,	
there	 can	 be	a	GUI	widget	 for	managing	 files	
and	constructing	the	DataManager	object,	and	
a	 GUI	 for	 changing	 PHIL	 parameters	 and	
constructing	 the	 PHIL	 object.	 The	 GUI	 can	
then	 construct	 the	 program	 object	 and	 go	
through	 the	 same	 steps	 of	 the	
ProgramTemplate.	 Because	 the	 process	 of	
running	 programs	 is	 standardized,	 all	
programs	can	have	a	basic	GUI,	similar	to	how	
CCTXParser	 provides	a	 common	 interface	 for	
the	command-line.	Of	course,	the	option	for	a	
more	 customized	 GUI,	 especially	 for	
presenting	 output	 is	 still	 available.	 More	
importantly,	 this	 is	 how	 the	 same	 code	 path	
will	 be	 executed	 regardless	 of	 how	 the	 user	
runs	a	program,	command-line	or	GUI,	which	
ensures	 that	 the	 same	 result	 is	 the	 same	 for	
both	interfaces.	

Similar	 to	 how	 there	 is	 now	 a	 default	 for	
simple	 input	 files	 for	each	data	 type,	another	
planned	 feature	 is	 to	 provide	 default	 names	
for	output	files	that	are	based	on	the	program	
name.	 This	 avoids	 another	 common	 PHIL	

14

PHIL	file	will	not	be	processed	by	the	parser.	

It	is	important	to	note	that	there	is	an	order	of	
precedence	 in	 how	 settings	 are	 applied.	
Basically,	 command-line	 PHIL	 arguments	 are	
applied	in	the	order	they	are	parsed,	from	left	
to	right,	and	they	override	any	settings	stored	
in	 PHIL	 files,	 processed	 in	 order	 from	 left	 to	
right.	 For	 example,	 if	 there	 were	 a	 program	
called	cctbx.test_program,	and	it	was	called	in	
the	following	way,	

the	 command-line	 arguments	 for	
phil_param_1	 and	 phil_param_2	will	 override	
any	 values	 in	 settings1.eff	 or	 settings2.eff.	
Values	 in	 settings2.eff	will	 override	 values	 in	
settings1.eff.	 Finally,	because	phil_param_1	 is	
specified	 twice,	 that	 parameter	will	be	 set	 to	
5,	 which	 is	 the	 last	 specification.	 To	 avoid	
confusion,	the	parser	shows	the	processing	in	
steps	and	also	has	a	summary	of	the	modified	
PHIL	 parameters	 after	 all	 processing	 is	
complete.	

Summary:	

After	 CCTBXParser	 completes	 parsing	 any	
files	and	PHIL	parameters	from	the	command-
line,	 DataManager	 and	 PHIL	 objects	 are	
created,	 which	 can	 be	 used	 to	 construct	 the	
program	 object.	 Then,	 the	 steps	 outlined	 in	
the	ProgramTemplate	section	can	be	called	in	
sequence	to	perform	the	work.	Because	these	
steps	 will	 basically	 be	 the	 same	 for	 all	
programs	 based	 on	 the	 ProgramTemplate,	
these	 steps	 are	 consolidated	 into	 the	
run_program	 function	 in	 iotbx/cli_parser.py.	
As	 shown	 in	 figure	 3,	 the	 file	 in	 the	
command_line	directory	 can	be	about	5	 lines	
that	 call	 run_program	 with	 the	 appropriate	
program	 class	 from	 the	 programs	 directory.	

cctbx.test_program settings1.eff settings2.eff phil_param_1=10
phil_param_2=”what” phil_param_1=5

	

	 72	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73	

Add	
hydrogens	

Model	
re�inement	

Validation	

Figure	 4:	 Pipelining	 example	 where	 the	 blue	 dot	 represents	 the	 DataManager	 as	 it	 passes	
through	each	program.	At	each	step,	the	default	model	is	updated	so	that	the	next	step	uses	the	
modified	model	as	its	input.	The	“Model	refinement”	step	uses	the	output	of	“Add	hydrogens,”	
and	 “Validation”	 uses	 the	 output	 from	 “Model	 refinement.”	 In	 this	 case,	 the	 data	 used	 for	
refinement	and	validation	is	unmodified,	so	it	can	just	pass	through	each	step	normally.	

16

parameter	 that	 specifies	 an	 output	 prefix	 for	
naming	files.	Moreover,	this	should	reduce	the	
complexity	 of	 developing	 simple	 programs	
that	 do	 minor	 modifications	 to	 a	 file	 (e.g.	
converting	a	model	file	between	PDB	and	CIF)	
and	 just	 needs	 to	 output	 the	 result.	 The	
DataManager	 will	 be	 responsible	 for	 writing	
output	files	and	this	feature	will	be	rolled	into	
the	 DataManager	 class.	 By	 consolidating	 the	
reading	 and	 writing	 of	 files	 into	 the	
DataManager,	 the	 boundary	 between	 user	
files	 and	 CCTBX	 data	 structures	 is	 more	
clearly	 defined,	 which	will	 help	with	making	
interfaces	 more	 consistent,	 especially	 error	
handling	with	file	input/output.	

Longer	term,	because	the	DataManager	stores	
information	 about	 filenames	 and	 data	
structures	 for	both	 inputs	and	outputs,	 it	 can	
be	 a	 persistent	 data	 repository	 between	
programs.	 That	 is,	 developers	will	 be	 able	 to	
link	 different	 programs	 together	 without	
having	 to	write	 scripts	 or	 dump	data	 to	 files	

17

between	 steps	 because	 the	 DataManager	 has	
all	 the	 relevant	 information.	 For	 example,	
figure	4	shows	a	potential	pipeline	where	the	
first	program	adds	hydrogens	to	a	model	 file,	
then	 the	 model	 refinement	 program	 is	 run,	
and	finally	validation	is	performed	by	the	last	
program	 on	 the	 refined	 structure.	 At	 each	
step,	the	default	model	 is	updated	so	that	the	
next	 step	 uses	 the	 modified	 model	 as	 their	
default.	The	“Model	refinement”	program	uses	
the	 output	 from	 “Add	 hydrogens,”	 and	
“Validation”	 uses	 the	 output	 from	 “Model	
refinement.”	The	data	used	for	refinement	and	
validation	 is	 unmodified,	 so	 it	 can	 just	 pass	
between	steps	normally.	The	data	can	even	be	
added	 at	 the	 very	 beginning.	 The	 “Add	
hydrogens”	 program	 will	 just	 ignore	 it	
because	 the	 datatypes	 class	 variable	 for	 that	
program	 will	 not	 have	 an	 appropriate	 data	
type	and	also	because	the	code	in	the	program	
will	not	try	to	do	anything	with	data.	Updating	
the	 DataManager	 will	 probably	 require	 the	

	

	 73	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	62–73		

18

introduction	 of	 a	 new	 function	 to	 the	
ProgramTemplate	 class,	 most	 likely	 called	
update_data_manager.	 But	 because	 of	 the	
nature	of	classes	and	inheritance,	we	can	add	
this	 function	 to	all	programs	 relatively	 easily	
and	 then	 customize	 the	 implementation	 for	
individual	programs	that	need	it.	

While	 this	 is	 a	 hypothetical	 example	 for	
pipelining	programs,	 this	is	currently	done	 in	
the	Phenix	GUI	for	phenix.refine,	but	in	a	more	
ad	 hoc	 manner	 and	 is	 only	 available	 in	 the	
GUI.	 By	 adopting	 this	 new	 approach,	 we	 can	

19

standardize	 the	way	 these	pipelines	are	built	
and	make	them	available	to	both	the	GUI	and	
the	 command-line.	 This	 further	 improves	
overall	 consistency	and	 reduces	maintenance	
overhead	by	ensuring	that	the	same	code	path	
is	 executed	 consistently	 regardless	 of	 the	
interface.	

Acknowledgements:	

The	 author	 wishes	 to	 thank	members	 of	 the	
Phenix	 collaboration	 for	 helpful	 discussions	
about	their	desired	features	and	requirements	
for	a	general	program	template.	

20

References:	

1. Reenskaug,	 T.	 “Dynabook	 System	 Requirements.”	 1979	
(http://folk.uio.no/trygver/1979/sysreq/SysReq.pdf)	

2. Reenskaug,	T,	Wold,	P,	and	Lehne,	OA.	“Working	with	objects	-	The	OOram	Software	Engineering	
Method.” Manning	1996,	 ISBN	978-1-884777-10-3,	 pp.	 I-XXI,	 1-366	
(http://heim.ifi.uio.no/trygver/1996/book/WorkingWithObjects.pdf)	

3. Barad	BA,	Echols	N,	Wang	RY,	Cheng	Y,	DiMaio	F,	Adams	PD,	Fraser	JS.	(2015)	“Side-chain-directed	
model	and	map	validation	for	3D	Electron.”	Cryomicroscopy.	Nature	Methods	10:943-46.	

4. Lang	 PT,	 Ng	 HL,	 Fraser	 JS,	 Corn	 JE,	 Echols	 N,	 Sales	 M,	 Holton	 JM,	 Alber	 T.	 (2010)	 “Automated	
electron-density	sampling	reveals	widespread	conformational	polymorphism	in	proteins.”	Protein	
Sci.	7:1420-31.	

	

