
	 1	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

Computational
Crystallography
Newsletter	

1 .13, cryo-EM, C BETA, GEMMI

V
o

lu
m

e
N

in
e

Ja
n

u
a

r
y

 M
M

X
V

II
I

The	Computational	Crystallography	Newsletter	(CCN)	is	a	regularly	distributed	electronically	via	email	and	the	Phenix	website,	
www.phenix-online.org/newsletter.	 Feature	 articles,	meeting	 announcements	 and	 reports,	 information	 on	 research	or	 other	
items	of	interest	 to	computational	crystallographers	or	crystallographic	software	users	can	be	submitted	to	 the	editor	at	any	
time	for	consideration.	Submission	of	text	by	email	or	word-processing	files	using	the	CCN	templates	is	requested.	The	CCN	is	
not	a	formal	publication	and	the	authors	retain	full	copyright	on	their	contributions.	The	articles	reproduced	here	may	be	freely	
downloaded	for	personal	use,	but	to	reference,	copy	or	quote	from	it,	such	permission	must	be	sought	directly	from	the	authors	
and	agreed	with	them	personally.	

1

Table	of	Contents	
•Phenix	News	 	 	 	 1	
•Crystallographic	meetings		 	 2	
•Expert	Advice		

• Fitting	tips	#15	–	New	help	to	make	your	
2.5–4Å	cryoEM	structure	even	better		 2	

•Short	Communications	
• Tools	for	model-building	with	cryo-EM	
maps	 	 	 	 	 7	

• 	Gemmi	–	a	new	MX	library	 	 13	
• Overfitting	to	Ramachandran	and	
geometry	criteria	in	the	cryoEM	Model	
Challenge	 	 	 	 	 16	

•Articles	
• Cβ	deviations	and	other	aspects	in	Amber	
versus	CDL	refinements		 	 21	

• A	few	benchmark	tests	of	various	
compilers	on	Linux	and	Windows	 25	

Editor	
Nigel	W.	Moriarty,	NWMoriarty@LBL.Gov	

Phenix	News	
Announcements	
Phenix	1.13	release	
The	 Phenix	 developers	 are	 pleased	 to	
announce	 that	 version	1.13	of	 Phenix	 is	 now	

2

available	 (build	1.13-2998).	 Binary	 installers	
for	 Linux,	 Mac	 OSX,	 and	Windows	 platforms	
are	available	at	the	download	site.1	Highlights	
for	this	version	include	new	tools	and	feature	
enhancements:	
• phenix.map_to_model	-	better	symmetry	
support	and	improved	runtime	efficiency	

• phenix.structure_search	-	structural	library	
and	internal	support	for	mmCIF	

• phenix.ligand_identification	 -	 limit	 ligand	
size	for search	

• Phaser	2.8.1	-	various	bug	fixes	
• Structure	Comparison	-	more/improved	
validation	information	(ligands,	waters,	
cis/trans	peptides,	HIS	protonation)	

• GUI	-	automatic	validation	after	
phenix.real_space_refine;	visual	
improvements	in	validation	

• Internal	bug	fixes	and	performance	
improvements	

New	 video	 tutorials	 have	 been	 added	 to	 the	
Phenix	 Tutorial	 YouTube	 channel.2	 There	
include	and	overview	of	the	cryo-EM	tools	 in	
Phenix,	 a	 step-by-step	 guide	 on	 how	 to	 run	
MolProbity	 (web	 interface	 and	 Phenix	 GUI)	
and	MolProbity:	All	atom	contacts	tutorial.	
1	http://phenix-online.org/download/	
2	www.youtube.com/c/phenixtutorials	

	 2	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

3

	Crystallographic	 meetings	 and	
workshops	
The	 Astbury	 Conversation,	 Understanding	 Life	
in	molecular	detail,	April	16–17,	2018	
Location:	 University	 of	 Leeds.	 See	 website	
http://www.astburyconversation.leeds.ac.uk	
for	details.		

Expert	advice	

Fitting	 Tip	 #15	 –	 New	 help	 to	 make	 your	
2.5–4Å	cryoEM	structure	even	better	
Christopher	Williams,	Lizbeth	Videau,	and	
Jane	Richardson	
Duke	University	

We	join	cryoEM	structural	biologists	in	being	very	
excited	 and	 interested	 in	 the	 new,	
unprecedentedly	 higher-resolution	 structures	
now	 possible,	 and	 are	 working	 to	 develop	 new	
model-building,	 assessment	 and	 improvement	
tools	 suitably	 tuned	 for	 these	 new	 needs.	 	 We	
acted	as	assessors	 for	the	EMDB's	CryoEM	Model	
Challenge	 to	 try	out	 the	 relevance	and	usefulness	
of	 such	 tools.	 	 This	 tip	 briefly	 summarizes	
progress	 so	 far,	 both	
within	 Phenix	 and	
MolProbity	 and	 our	
favorites	 from	
elsewhere.			

In	 the	 2.5	 to	 4Å	
resolution	 range	 the	
model-to-map	fit	can	be	
quite	 convincing,	 but	 it	
often	 has	 enough	
leeway	 to	 prevent	 a	
unique	 answer.	 	 We	
find	 that	 refinement	 is	
therefore	able	to	satisfy	
the	 traditional	
validation	 criteria	 of	
geometry,	 map	 fit,	
Ramachandran,	 and	

4

rotamers	 and	 still	 be	 stuck	 in	 the	 wrong	 local-
minimum	 conformation	 in	 many	 places.		
Therefore,	new	criteria	are	needed	that	are	not	yet	
used	 in	 refinement	 and	 that	 integrate	 measures	
somewhat	 more	 broadly.	 	 We	 feel	 the	 two	 most	
generally	 useful	 such	 new	 tools	 for	 cryoEM	
models	 of	 protein	 are	 the	 CaBLAM	 backbone	
analysis	 from	 our	 lab	 (see	 below)	 and	 the	
EMRinger	 tool	 from	 the	 Fraser	 lab	 (Barad	2015).			
EMRinger	 looks	 for	 satisfaction	 of	 the	 expected	
chi1	 angles	 at	 the	 Cβ	 atom	 –	 not	 to	 analyze	
rotamers,	 but	 to	 check	 for	 problems	 in	 the	
backbone	 that	 turn	 the	 Cα-Cβ	 in	 the	 wrong	
direction.	 	You	 can	get	 this	analysis	 on	your	 own	
structure	at	emringer.com.	 	Tools	 for	nucleic	acid	
models	are	discussed	below.	

CaBLAM	
The	 CaBLAM	 software	 from	 the	 Duke	 Phenix	
developer	 team	 (Williams	 2013;	 2018)	 uses	 Cα	
virtual	dihedrals	 to	 follow	 the	backbone	 intent	of	
the	 relatively	 low-resolution	 model	 and	 density,	
and	 uses	 the	 virtual	 dihedral	 between	 adjacent	
peptide	 CO	 orientations	 to	 diagnose	 problems	
with	 the	 detailed	 conformation	 that	 has	 been	
fitted.	 	A	cryoEM	example	from	KiNG	3D	graphics	

Figure	1:	 	 CaBLAM	markup	 for	 incorrect	 peptide	orientation	on	a	 CryoEM	Model	
Challenge	β-hairpin.			

	 3	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

5

in	MolProbity	is	shown	in	figure	1,	where	CaBLAM	
1%	outliers	flag	two	places	where	3	successive	CO	
groups	 have	 been	 pointed	 in	 the	 same	 direction	
rather	than	alternating.		This	is	never	seen	in	good	
reference	data	and	prevents	some	of	the	β-type	H-
bonds.	 	 As	 shown,	when	 clicked	 on,	 the	 CaBLAM	
markup	 also	 reports	 on	probability	 that	 the	 local	
structure	 is	 helix	 (0%	 here)	 or	 β-strand	 (31%	
here).	 	 This	 information	 can	 also	 be	 accessed	 in	
Phenix	from	the	command-line.	

The	 CaBLAM	 algorithm	 can	 diagnose	 many	
different	 sorts	 of	 problems,	 from	 wildly	
improbable	peptide	orientations	within	helices	or	
beta	 strands,	 to	 analysis	 of	 Cα-only	 models,	 to	
sidechain-mainchain	 switches,	 to	 local	 sequence	
misalignments	 such	 as	 the	 example	 shown	 in	
figure	 2.	 	 The	 central	 region	 of	 a	 local	 sequence	
misalignment	often	shows	poor	map	fit,	rotamers,	
and	sterics	at	higher	resolutions,	but	is	not	clearly	
diagnostic	in	the	2.5–4Å	range.		Even	the	ends	can	
often	 be	 fit	 to	 avoid	 Ramachandran	 outliers,	 but	
are	most	 reliably	 flagged	by	clashes	 and	CaBLAM	

6

outliers.	 	 Note,	 though,	 that	 such	 outliers	 mean	
there	 is	some	fairly	severe	problem,	but	 it	 is	only	
sometimes	a	sequence	misalignment.	

Cis-nonPro	and	twisted	peptides	
CaBLAM	also	often	flags	trans	residues	that	should	
have	been	fit	as	cis	or	vice	versa.		Cis	prolines	are	
fairly	common	at	5%,	but	cis-nonPro	peptides	are	
extremely	rare	at	~1	in	3000	or	0.03%	(Williams	
2015).	 	 	 Over	 the	 last	 decade,	 cis-nonPro	 were	
hugely	 overused	 without	 anyone	 noticing	 until	
recently;	 they	 are	 in	 the	 libraries	 and	 prior	
probabilities	 are	 not	 considered	 yet	 in	 model-
building	 (the	Phenix	 teams	 are	working	 on	 that).		
There	 use	 is	 even	 more	 frequent	 than	 random,	
because	 a	 cis	 peptide	 seems	 to	 fit	 better	 into	 a	
shortened,	 curled-in	 loop.	 	 Now	 that	 MolProbity,	
Phenix,	 and	 Coot	 all	 flag	 cis-nonPro	 (Williams	
2018),	 their	 overuse	 has	 decreased	 dramatically	
in	crystal	structures.		CryoEM	structures	need	also	
to	watch	out	for	this	problem.		Figure	3	shows	that	
at	2.2Å	the	map	fit	can	actually	tell	 the	difference	
of	 cis	vs	 trans	 if	 you	 look	 for	 it.	 	 At	 ≥3Å	 the	map	

Figure	2:		CaBLAM	often	flags	one	or	both	ends	of	a	local	sequence	misalignment,	even	when	no	other	validation	
metrics	do.		This	figure	compares	the	CryoEM	Model	Challenge	target	1	cryoEM	structure	4udv	at	3.3Å	(left)	with	
the	submitted	model	T0001EM188_1	(right,	with	misaligned	region	in	brown	&	peach).	

	 4	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

7

cannot	possibly	distinguish,	so	you	should	only	fit	
cis	 if	 it	 is	 known	 to	 occur	 for	 your	 protein	 at	
higher	resolution	(for	instance,	for	3	cis-nonPro	at	
functional	 sites	 in	 the	 carbohydrate-active	 β-
galactosidase).	

RNA:	 ribose	 puckers	 and	 backbone	 suite	
conformers	
The	 phosphates	 in	 nucleic	 acid	 structures	 are	
negatively	 charged	 and	 have	 lowered	 density	 in	
cryoEM	maps,	 just	 as	 protein	 sidechain	 carboxyl	
groups.	 	 As	 shown	 in	 figure	 4	 below,	 the	 more	
positively-charged	bases,	in	contrast,	are	stronger	
in	 cryoEM	 than	 in	 x-ray	 maps.	 	 	 Base-pairs	 are	
thus	 a	 really	 excellent	 way	 to	 locate	 double	
helices	in	both	RNA	and	DNA.			

RNA	 backbone	 is	 a	 tube	 between	 ribose	 lumps,	
very	 hard	 to	 fit	 in	 detail	 for	 either	 x-ray	 or	
cryoEM.	 	 Fortunately,	 MolProbity	 has	 developed	
validation	that	can	infer	ribose	pucker	(3'-endo	or	
2'-endo)	 with	 high	 reliability	 just	 from	 the	 well-
seen	 and	 interpreted	 PO4	 and	 base	 positions	
(Richardson	 2008;	 Jain	 2014).	 	 That	 "P-perp"	
criterion	enables	pucker-specific	targets	in	Phenix	

8

refinement,	 which	 can	 correct	 some	 of	 the	
problems,	 and	 it	 is	 easily	 seen	 by	 eye,	 to	 aid	
manual	rebuilding	for	harder	cases.	

RNA	 backbone	 has	 distinct	 conformers	 when	
analyzed	 as	 sugar-to-sugar	 "suites",	 of	 which	 54	
have	 been	 identified	 and	 named	 by	 community	
consensus	 (Richardson	2008).	 	These	conformers	
can	 be	 used	 either	 for	 model-building	 or	
validation,	and	are	analyzed	in	MolProbity.			[Note	
that	 the	 wwPDB	 uses	 a	 criterion	 of	 "suiteness"	
(analogous	 to	 "rotamericity"),	which	 is	much	 less	
powerful	 or	 useful	 than	puckers	 and	 conformers,	
since	it	is	greatly	affected	by	the	percentage	of	A-
form	double	helix	in	the	structure.]			

DNA	 conformation	 is	 simpler	 overall	 than	 RNA,	
since	 it	 is	 nearly	 always	 close	 to	 B-form	 double	
helix.	 	 However,	 it	 is	 actually	 more	 difficult	 than	
RNA	to	validate,	because	it	is	locally	more	flexible,	
so	less	restrained	and	therefore	also	more	subject	
to	 error.	 	 Standard	 programs	 such	 as	 3DNA	
(x3dna.org;	 Colisanti	 2013)	 are	 helpful,	 but	
refinement	may	be	using	them	by	now.		A	new	tool	
for	DNA	backbone	conformers,	to	which	no	one	is	

Figure	3:		CaBLAM	graphical	flagging	of	an	incorrect	Gly-Gly	cis-nonPro	in	the	cryoEM	2.2A	5a1a	β-galactosidase	
(left),	compared	with	a	clear	fit	as	trans	from	the	1.6Å	xray	4ttg	(right;	Wheatley	2015).		At	2.2Å,	the	5a1a	cryoEM	
map,	as	well	as	CaBLAM,	actually	suggests	that	this	local	fit	is	incorrect.	

	 5	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

9

yet	 refining,	 is	 available	 at	 dnatco.org	 (Schneider	
2018).	 	Their	data	 is	not	quality-filtered,	 so	some	
of	 the	 conformers	 are	 not	 actually	 possible,	 but	
most	 are	 good	 and	 its	 use	 could	 help	 improve	
accuracy	considerably.	

The	bottom	line	
Even	 if	 your	 cryoEM	 model	 has	 been	 fit	 and	
refined	so	as	to	get	rid	of	nearly	all	outliers	on	the	

10

traditional	 validation	 metrics	 (geometry,	
Ramachandran,	rotamer,	and	sterics),	at	2.5	to	4Å	
resolution	 there	 are	 very	 likely	 to	 still	 be	 local	
regions	 stuck	 in	 the	 wrong	 local	 minimum.	
However,	 new	 tools	 are	 being	 developed	 which	
are	both	independent	and	also	sensitive	enough	to	
diagnose	 locally	 misfit	 regions	 and	 guide	 their	
correction.	

11

References	
Barad		BA,	Echols	N,	Wang	R	Y-R,	Cheng	YC,	DiMaio	F,	Adams	PD,	Fraser	JS	(2015)	"EMRinger:	
Sidechain-directed	model	and	map	validation	for	3D	electron	cryomicroscopy",	Nature	Methods	12:	
943-946	

Bartesaghi	A,	Merk	A,	Bannerjee	S,	Matthies	S,	Wu	X,	Milne	J,	Subramaniam	S	(2015)"2.2	A	resolution	
cryo-EM	structure	of	beta-galactosidase	in	complex	with	a	cell-permeant	inhibitor"	Science	348:	
1147-1151		[5a1a]	

Colasanti	A,	Lu	X-J,	Olson	WK	(2013)	"Analyzing	and	building	nucleic	acid	structures	with	3DNA",		
JoVE,	74,	e4401	

Fischer	N,	Neumann	P,	Konevega	AL,	Bock	LV,	Ficner	R,	Rodnina	MV,	Stark	H	(2015)	"2.9Å	structure	of	
E	coli	ribosome-EF-Tu	complex	by	cs-corrected	cryo-EM",	Nature	520:	567-570	

Fromm	SA,	Bharat	TAM,	Jakobi	AJ,	Hagen	WJH,	Sachse	C	(2015)	"Seeing	tobacco	mosaic	virus	through	
direct	electron	detectors"	J.Struct	Biol	189:	87-97		[4udv]	

Jain	S,	Kapral	G,	Richardson	D,	Richardson	J	(2014)	"Fitting	Tips	#7:	Getting	the	pucker	correct	in	RNA	
structures",	Comput	Crystallogr	Newsletter	5:	4-7	

Li	N,	Zhai	Y,	Zhang	Y,	Li	W,	Yang	M,	Lei	J,	Tye	BK,	Gao	N	(2015)	"Structure	of	the	eukaryotic	MCM	
complex	at	3.8Å",	Nature	524:	186-191		[3ja8]		

Richardson	JS,	Schneider	B,	Murray	LW,	Kapral	GJ,	Immormino	RM,	Headd	JJ,	Richardson	DC,	Ham	D,	
Hershkovits	E,	Williams	LD,	Keating	KS,	Pyle	AM,	Micallef	D,	Westbrook	J,	Berman	HM	(2008)	"RNA	

Figure	4:		RNA	structure	seen	in	the	cryoEM	map	of	a	ribosome	at	2.9Å	(5afi;	Fischer	2015).		Positive	bases	are	
very	strong,	while	negative	phosphates	are	weaker	than	in	crystallographic	density.	

	 6	Computational	Crystallography	Newsletter	(2018).	Volume	9,	Part	1.	

12

Backbone:		Consensus	all-angle	conformers	and	modular	string	nomenclature."	RNA	14:	465-481	
Schneider	B,	Bozikova	P,	Necasova	I,	Cech	P,	Svozil	D,	Cerny	J	(2018)	"A	DNA	structural	alphabet	
provides	new	insight	into	DNA	flexibility",	Acta	Crystallographica	D	74:52-64	

Wheatley	RW,	Juers	DH,	Lev	BB,	Huber	RE,	Noskov	SY	(2015)	"Beta-galactosidase	(E.	coli)	in	the	
presence	of	potassium	chloride"	Phys	Chem	Chem	Phys	17:	10899-10909		[4ttg]	

Williams	CJ,	Hintze	BJ,	Richardson	 JS,	 Richardson	DC	(2013)	 "CaBLAM:	 Identification	and	scoring	of	
disguised	secondary	structure	at	 low	resolution",	Computational	Crystallography	Newsletter	4:	33-
35	

Williams	CJ,	Richardson	JS	(2015)	"Fitting	Tips	#9:	Avoid	excess	cis	peptides	at	low	resolution	or	high	
B",	Comp	Cryst	Newsletter	6:	2-6	

Williams	CJ,	Hintze	BJ,	Headd	JJ,	Moriarty	NW,	Chen	VB,	Jain	S,	Prisant	MG	Lewis	SM,	Videau	LL,	Keedy	
DA,	Deis	LN,	Arendall	WB	III,	Verma	V,	Snoeyink	JS,	Adams	PD,	Lovell	SC,	Richardson	JS,	Richardson	
DC	(2018)	MolProbity:	More	and	better	reference	data	for	 improved	all-atom	structure	validation,	
Protein	Science	27:	293–315	

13

FAQ	

What	happens	when	the	Phenix	GUI	prompts	
me	to	send	an	error	report?	

If	 the	 Phenix	GUI	 pops	 up	 a	window	 to	 send	
an	 error	 report,	 it	 is	 an	 opportunity	 to	work	
with	a	Phenix	developer	and	solve	the	current	
situation	that	caused	the	problem.	There	are	a	
few	 things	 to	 do	 that	 can	make	 this	 a	 useful	
and	efficient	experience	for	all.	

1. Type	 in	 the	 correct	 email	 address.	 A	 Phenix	
developer	 answers	 all	 emails	 that	 contain	 a	
unique	issue	and	user	combination.	Without	a	
functioning	 email	address,	 the	 process	 is	 cut	
short.	

2. Consider	 typing	 in	 a	 description.	 This	 will	
help	 us	 diagnose	 the	 problem	 and	may	 also	
help	you	with	the	standard	questions	 from	a	
developer	that	usually	include:	
a. What	OS	are	you	using?	
b. What	 programs	 and	 options	 were	 you	
using	when	the	problem	occurred?	

c. Can	you	provide	the	inputs?	

14

3. If	you	run	across	the	same	problem,	you	can	
rest	 assured	 that	 the	 problem	 has	 been	
registered	and	there	is	no	need	to	resend	the	
same	issue.	

4. Consider	 checking	 the	 website,	 phenix-
online.org,	 for	 later	versions	of	Phenix.	Many	
issues	 are	 resolved	 daily	 by	 the	 developers	
and	 installing	 the	 latest	 Phenix	 may	 solve	
your	 problem.	 You	 can	 have	 multiple	
installations	 and	 choice	 to	 use	 any	 of	 those	
installed	on	your	computer.	

These	tips	can	help	with	solving	the	problems	
which	 a	 high	 priority	 of	 the	 developers.	
Providing	 the	 inputs	and	a	description	of	 the	
events	 that	 led	 up	 to	 the	 crash	 is	 critical	 to	
reproduction	of	the	crash	by	a	developer	and	
the	eventual	resolution.	

	

	

	

7	

7	Computational	Crystallography	Newsletter	(2018).	9,	7–12	

SHORT COMMUNICATIONS

1

Tools	for	model-building	with	cryo-EM	maps	
Tom	Terwilliger	
Los	Alamos	National	Laboratory,	Los	Alamos	NM	87545	
New	Mexico	Consortium,	100	Entrada	Dr,	Los	Alamos,	NM	87544	

2

Introduction	
There	 are	 new	 tools	 available	 to	 you	 in	 Phenix	 for	 interpreting	 cryo-EM	 maps.	 	 You	 can	
automatically	sharpen	(or	blur)	a	map	with	phenix.auto_sharpen	and	you	can	segment	a	map	
with	phenix.segment_and_split_map.	 If	 you	have	 overlapping	 partial	models	 for	 a	map,	you	
can	merge	them	with	phenix.combine_models.		If	you	have	a	protein-RNA	complex	and	protein	
chains	 have	 been	 accidentally	 built	 in	 the	 RNA	 region,	 you	 can	 try	 to	 remove	 them	 with	
phenix.remove_poor_fragments.	 You	 can	 put	 these	 together	 and	 automatically	 sharpen,	
segment	and	build	a	map	with	phenix.map_to_model.	

Sharpening	a	map	with	phenix.auto_sharpen	
The	phenix.auto_sharpen	 tool	 is	 designed	 to	 find	 the	 optimal	 sharpening	 for	 a	 cryo-EM	 (or	
crystallographic)	map	based	on	maximizing	 the	detail	 in	 the	map	as	well	as	 the	 connectivity.	
Sharpening	 of	 the	 map	 is	 carried	 out	 by	 applying	 an	 overall	 sharpening	 B-factor	 to	 the	
amplitudes	 of	 the	 Fourier	 transform	 of	 the	 map	 up	 to	 the	 nominal	 resolution	 of	 the	 map.		
Beyond	that	resolution	the	amplitudes	are	damped.	 	 In	 this	method,	 the	key	parameter	 is	 the	
value	of	the	sharpening	B-factor.			

The	detail	in	the	map	is	represented	by	the	surface	area	of	contours	at	a	fixed	contour	level.	The	
(lack	of)	connectivity	is	represented	by	the	number	of	regions	in	the	map	at	that	contour	level;	
the	contour	level	is	chosen	to	enclose	about	20%	of	the	volume	of	the	molecule.		The	target	for	
optimization	 is	 the	 adjusted	 surface	 area	 calculated	 as	 the	 surface	 area	minus	 a	 scale	 factor	
times	the	number	of	regions	in	the	map.	 	The	scale	factor	is	set	automatically	by	requiring	the	
adjusted	 surface	area	 to	be	equal	 at	 the	 lowest	and	highest	values	of	 the	 sharpening	B-value	
tested.	 	The	 sharpening	B-value	 is	 then	adjusted	to	maximize	the	adjusted	 surface	area.	 	The	
auto-sharpen	procedure	creates	a	new	map	that	is	in	the	same	position	and	has	the	same	grid	
as	the	original	map.	

You	can	apply	the	auto-sharpening	procedure	globally	(the	same	sharpening	B-factor	is	applied	
to	the	entire	map)	or	locally	(a	different	sharpening	B-factor	is	applied	to	each	part	of	the	map).		
In	 practice,	 typically	 the	 global	 sharpening	 is	 just	 as	 good	 as	 local	 sharpening.	 	 The	 local	
sharpening	procedure	uses	the	segmentation	procedure	in	phenix.segment_and_split_map	to	
find	 the	 regions	 in	 the	 map	 where	 the	 molecule	 is	 located.	 	 For	 each	 such	 region,	 a	 box	 of	
density	 is	 cut	 out	 surrounding	 the	 region	 and	 a	 local	 sharpening	 B-value	 is	 identified	 and	
applied	to	the	grid	points	 in	 the	box.	 	The	density	for	points	that	are	 in	more	than	one	box	 is	
their	average,	weighted	based	on	the	distance	of	each	point	from	the	center	of	corresponding	
boxes.	Points	outside	any	of	these	boxes	are	sharpened	with	the	global	sharpening	B-value.	

You	can	also	refine	not	just	the	overall	sharpening	B-factor,	but	also	the	high-resolution	cutoff	
where	the	sharpening	turns	into	blurring	and	the	sharpness	of	the	transition	from	sharpening	

	

	 8	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	7–12	

3

to	 blurring.	 	 In	our	 test	 cases,	 this	procedure	 had	 little	 effect	on	 the	outcome	so	 it	 is	 not	 the	
default.	

Using	the	auto-sharpen	procedure	is	easy.	You	just	supply	the	map	and	the	resolution.		Figure	1	
shows	a	small	section	through	a	map	for	EMDB	entry	6344	along	with	the	corresponding	PDB	
entry	 (3jad)	 (left),	 and	 the	 results	of	 automatic	map	sharpening	 (right).	 For	 local	 sharpening,	
you	can	optionally	supply	as	well	solvent	content	or	a	sequence	file	or	the	molecular	mass	of	the	
molecule	so	that	the	regions	of	the	map	corresponding	to	the	macromolecule	can	be	identified.	
The	solvent	content	will	be	guessed	if	not	supplied.	

You	can	see	the	methods	in	phenix.auto_sharpen	in	detail	at	(Terwilliger	et	al.,	2018).	

Automatic	segmentation	of	a	map	with	phenix.segment_and_split_map	
The	 next	 step	 in	 interpreting	 a	 cryo-EM	map	 after	 sharpening	 is	 to	 segment	 the	 map.	 	 The	
purpose	of	segmentation	is	to	break	the	map	up	into	smaller	pieces	that	are	suitable	for	model-
building.		If	the	map	has	symmetry,	segmentation	can	identify	the	basic	unit	of	the	map	so	that	
the	same	part	of	the	map	does	not	have	to	be	interpreted	many	times.		If	the	map	has	regions	
that	 are	 different	 chain	 types,	 segmentation	 can	 separate	 them	 and	 work	 with	 them	
individually.	

There	are	three	steps	in	segmenting	a	map	with	phenix.segment_and_split_map.	The	first	is	to	
contour	 the	 map	 and	 find	 all	 the	 regions	 defined	 by	 these	 contours.	 The	 next	 is	 to	 find	 the	
symmetry	in	the	map.		The	third	is	to	find	a	unique	and	compact	set	of	regions	that	represents	

Figure	1:	A	small	section	through	a	map	for	EMDB	entry	6344	along	with	the	corresponding	PDB	entry	
(3jad)	(left),	and	the	results	of	automatic	map	sharpening	(right).	

	

	 9	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	7–12	

4

the	basic	unit	of	the	map.		Applying	symmetry	to	this	basic	unit	of	the	map	then	can	regenerate	
the	entire	map.	

The	phenix.segment_and_split_map	 tool	 contours	 the	map	using	 the	 same	approach	as	was	
used	 above	 in	 auto-sharpening.	 	 The	 contour	 level	 is	 chosen	 to	 enclose	 about	 20%	 of	 the	
volume	 representing	 the	 macromolecule	 but	 is	 adjusted	 further	 to	 enclose	 regions	 that	
typically	correspond	to	about	50	residues	in	length.	As	symmetry-related	parts	of	the	map	have	
the	same	densities,	this	procedure	yields	a	set	of	regions	that	can	be	grouped	in	the	next	step	
based	on	the	symmetry	in	the	map.	

The	 phenix.segment_and_split_map	 tool	 can	 identify	 symmetry	 in	 a	 map	 by	 comparing	
density	at	symmetry-related	points.		You	can	specify	for	example	that	the	map	has	icosahedral	
symmetry,	and	the	tool	will	 test	various	common	settings	of	 this	symmetry	to	 see	 if	 they	are	
present.	Alternatively	the	tool	can	look	through	all	common	symmetries	and	settings	to	find	the	
one	with	the	highest	symmetry	that	fits	the	map.	You	can	also	supply	symmetry	with	a	Phenix	
ncs_spec	file	or	in	BIOMTR	records.		

Using	 the	 symmetry	 in	 the	map,	 the	phenix.segment_and_split_map	 tool	 identifies	 the	basic	
unit	 of	 the	map.	This	 is	done	by	grouping	 the	 contoured	 regions	 in	 the	map	 into	 symmetry-
related	 sets	 and	 choosing	 a	 set	 of	 regions	 that	 forms	 a	 compact	 group.	 	 You	 can	 optionally	
surround	this	basic	unit	of	the	map	with	neighboring	groups	so	that	you	have	a	better	chance	of	
enclosing	a	complete	molecule	in	the	basic	unit	of	the	map.	

The	tool	writes	out	several	map	files.	One	is	just	the	input	map,	shifted	so	that	the	(0,0,0)	grid	
point	of	the	map	is	at	the	coordinates	(0.	,0.	,0.).	Another	is	a	map	representing	the	basic	unit	of	
the	 original	map,	 typically	written	 to	 the	 file	 box_map_au.ccp4.	 	 This	map	 is	 normally	much	
smaller	 than	 the	original	map,	particularly	 if	 there	 is	 a	high	degree	of	 symmetry	 in	 the	map.		
This	map	is	shifted	(again)	so	that	its	origin	is	again	at	(0,0,0).	You	can	use	this	map	for	model-
building	if	you	want.		You	can	even	automatically	shift	the	resulting	model	back	to	the	position	
of	 the	original	map.	Another	set	of	maps	are	region	maps,	one	 corresponding	to	each	unique	
region	 identified	 by	 phenix.segment_and_split_map.	 These	 maps	 all	 superimpose	 on	 the	
shifted	input	map,	so	their	origins	are	not	normally	at	(0,0,0).	

Combining	partial	models	with	phenix.combine_models	
The	phenix.combine_models	tool	can	combine	the	best	parts	of	two	or	more	models.	You	can	
use	it	in	either	of	two	different	ways.		One	approach	keeps	segments	in	the	models	intact,	and	
the	second	applies	crossovers	within	segments.	

In	 the	 first	approach	(merge_by_segment_correlation=True),	each	 fragment	 in	each	model	is	
scored	based	on	correlation	to	the	map.	The	scoring	also	includes	a	weight	based	on	the	square	
root	 of	 the	 length	 of	 the	 segment.	 It	 also	 includes	weights	 based	 on	whether	 a	 segment	 has	
been	assigned	to	the	sequence	and	the	number	of	secondary	structure	hydrogen	bonds	in	that	
segment.	 	 This	 approach	 can	 combine	 chains	 of	 different	 types	 as	well.	 A	 final	 increment	 is	
added	 to	 the	 score	 for	 a	 segment	 if	 it	 is	 considered	 very	 likely	 to	 be	 correct	 with	 different	
thresholds	for	chains	of	different	types.		

	

	 10	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	7–12	

5

Then	the	segments	are	picked	in	rank	order	to	create	a	composite	model.	Any	part	of	a	segment	
that	does	not	overlap	an	existing	part	of	the	composite	model	 is	kept.	If	symmetry	is	present,	
overlaps	include	that	symmetry.	

In	the	second	approach,	(merge_by_segment_correlation=False),	a	working	model	is	created	
by	taking	all	of	the	 first	model	supplied	and	filling	in	any	empty	regions	with	fragments	 from	
other	models.	Then	one	by	one,	 the	 segments	 in	 the	working	model	 are	 recombined	with	all	
other	 segments.	 	To	 carry	out	 recombination	between	two	chains,	residues	that	match	 in	the	
two	 chains	 are	 identified.	 Then	 for	 each	 segment	 between	 matching	 pairs	 of	 residues,	
whichever	chain	has	the	higher	correlation	to	the	map	is	kept	to	create	a	composite	model.	

Removing	poor	parts	of	a	protein-RNA	model	with	phenix.remove_poor_fragments	
When	 carrying	 out	 model-building	 for	 complexes	 between	 protein	 and	 RNA	 it	 sometimes	
happens	 that	 protein	 can	 be	 built	 accidentally	 into	 regions	 that	 are	 really	 RNA.	 The	
phenix.remove_poor_fragments	tool	is	used	to	try	and	identify	such	incorrectly-built	regions.	
The	key	idea	in	this	approach	is	that	these	incorrectly-built	regions	tend	to	be	isolated	(not	in	
the	middle	 of	 a	 protein	 domain)	 and	 to	 have	 lower	map-model	 correlation	 than	 the	 correct	
parts	 of	 the	 protein	 chains.	 	 The	 phenix.remove_poor_fragments	 tool	 ranks	 all	 protein	
segments	on	these	criteria	and	removes	the	worst	ones.	The	threshold	that	is	chosen	based	on	
the	 number	 of	 residues	 of	 RNA	 expected	 in	 the	molecule	 that	were	 not	 built,	 the	 fraction	 of	
protein	that	was	built,	and	the	quality	of	the	model,	using	the	formula:	

	 residues_to_remove	=	A	*	protein_built	*	rna_not_built/(cc*protein_present)	 (1) 	

where	cc	 is	 the	map-model	correlation	 for	 the	protein	part	of	 the	model,	protein_present	 is	
the	 number	 of	 protein	 residues	 in	 the	 sequence	 file,	 protein_built	 are	 residues	 of	 protein	
built,	and	rna_not_built	are	residues	of	RNA	in	the	sequence	file	minus	the	number	built.	

The	logic	of	this	formula	is	that	there	is	a	certain	volume,	proportional	to	rna_not_built,	that	is	
really	RNA	that	might	be	accidentally	built	as	protein.	Furthermore	the	logic	is	that	the	number	
of	residues	of	protein	that	might	be	built	 in	 that	volume	is	higher	 if	more	residues	of	protein	
have	been	built	 and	higher	 if	 the	model-map	correlation	 for	 the	protein	model	 is	 low.	These	
relationships	were	seen	in	an	analysis	of	ribosome	structures.	A	scale	factor	A	of	0.53	relating	
the	optimal	number	of	residues	to	remove	to	the	other	factors	was	found	empirically.			

Build	a	model	with	phenix.map_to_model	
You	 can	 carry	 out	 fully	 automatic	 map	 interpretation	 and	 model-building	 with	
phenix.map_to_model.	 	 This	 tool	 first	 sharpens	 the	map	 and	carries	out	 segmentation	 of	 the	
map	 to	 produce	 a	 map	with	 the	 unique	 part	 of	 the	 original	 map	 and	maps	 for	 each	 unique	
region	in	the	map.	The	tool	then	carries	out	model-building	both	in	the	entire	unique	part	of	the	
map	and	in	each	individual	region.	 	Then	phenix.map_to_model	combines	the	best	parts	of	all	
these	models,	applies	symmetry,	and	refines	the	full	model	(see	figure	2	for	an	example)	

The	 phenix.map_to_model	 tool	 uses	 three	 different	 methods	 for	 model-building.	 One	 is	
standard	resolve	model-building,	as	in	phenix.autobuild.		This	is	applied	to	the	entire	unique	

	

	 11	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	7–12	

6

part	 of	 the	 map.	 	 A	 second	 is	 finding	 regular	 secondary	 structure	 with	
phenix.find_helices_strands,	also	carried	out	on	the	entire	unique	portion	of	 the	map.	The	
third	is	chain-tracing	followed	by	refinement	using	secondary-structure	restraints.	 	This	 third	
method	uses	the	trace_chain	algorithm	in	phenix.find_helices_strands,	which	traces	tubes	of	
density	by	 finding	positions	 in	 the	density	 that	 are	 separated	by	about	3.8	A.	 	These	C-alpha	
positions	 are	 converted	 to	 a	 main-chain	 model	 with	 Pulchra(Rotkiewicz	 &	 Skolnick,	 2008).	
Then	 it	 uses	 the	 phenix	 tool	 phenix.iterative_ss_refine,	 which	 identifies	 secondary	
structure	in	a	poor	model,	generates	restraints	based	on	an	idealized	version	of	that	secondary	
structure,	 and	 refines	 with	 phenix.real_space_refine	 including	 those	 restraints.	 	 Each	 of	
these	 three	 approaches	 generates	 one	 preliminary	 model	 which	 is	 refined	 with	
phenix.real_space_refine.		(These	models	are	typically	called	model_standard_PROTEIN.pdb,	
model_init_PROTEIN.pdb,	and	model_helices_strands_only_PROTEIN.pdb	respectively).			

If	there	is	RNA	or	DNA	present	in	the	structure	(as	guessed	from	the	sequence	file	or	specified	
by	the	user),	RNA	or	DNA	model-building	is	carried	out	in	much	the	same	way	as	was	done	for	
protein,	except	that	there	is	no	equivalent	of	the	chain	tracing	algorithm	used.	

Figure	2:	Example	of	a	combined	model.	

	

	 12	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	7–12	

7

The	 preliminary	models	 are	 then	 combined	with	 the	 phenix.combine_models	 tool	 using	 the	
merge_by_segment_correlation=True	approach.		If	there	is	symmetry	present,	the	symmetry	is	
included	when	 combining	models	 to	 ensure	 that	 there	 is	 no	 overlap.	 The	 resulting	model	 is	
refined	with	phenix.real_space_refine	to	yield	model_PROTEIN.pdb.			If	there	is	RNA	or	DNA	
present,	those	models	will	be	in	model_RNA.pdb	or	model_DNA.pdb.	

To	combine	models	with	RNA,	protein	and	DNA,	the	tool	phenix.combine_models	is	used	once	
again	 with	 the	 merge_by_segment_correlation=True	 approach.	 Each	 segment	 (of	 any	 chain	
type)	is	scored	by	length	and	map	correlation	and	by	presence	of	hydrogen	bonds,	and	the	best-
scoring	segment	is	picked	for	each	part	of	the	map.			

In	cases	where	RNA	is	a	substantial	part	of	the	structure	(at	least	1/6	of	the	total),	a	final	step	is	
carried	out	in	which	poorly-fitting	parts	of	the	protein	model	are	removed.	This	step	is	helpful	
for	 structures	 such	as	ribosomes	where	much	of	 the	structure	 is	RNA,	but	where	protein	can	
sometimes	be	built	accidentally	into	regions	that	are	RNA	but	were	not	built	as	RNA.			The	tool	
phenix.remove_poor_fragments	 guesses	 how	much	 of	 the	 protein	 part	 of	 a	model	might	 be	
built	incorrectly	and	removes	the	appropriate	amount	of	the	worst-fitting	and	isolated	parts	of	
the	protein	part	of	the	model.	

Finally,	 any	 symmetry	 is	 applied	 to	 the	model,	parts	 that	overlap	by	 symmetry	are	 removed,	
and	the	final	model	is	refined	with	phenix.real_space_refine.	The	entire	model	is	shifted	to	
the	original	position	of	the	original	map	and	written	out	as	map_to_model.pdb	and	the	unique	
part	of	the	model	is	also	written	out	if	symmetry	is	present	(map_to_model_unique.pdb).	

References:	

Rotkiewicz,	P.	&	Skolnick,	J.	(2008).	J.	Comput.	Chem.	29,	1460–1465.	

Terwilliger,	T.	C.,	Sobolev,	O.,	Afonine,	P.	V.	&	Adams,	P.	D.	(2018).	BioRxiv.	247049.	
https://www.biorxiv.org/content/early/2018/01/11/247049	

	

	

	

	 13	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	13–15		

1

	Gemmi	–	new	MX	library	
Marcin	Wojdyr	

Global	Phasing	Ltd,	Cambridge,	UK	

Correspondence	email:	wojdyr@gmail.com	

2

Introduction	
At	the	beginning	of	2017	CCP4	and	Global	Phasing	
Ltd.	 started	 a	 new	 software	 project	 –	 an	 open-
source	library	called	Gemmi1	–	funding	one	person	
(me)	 to	work	 on	 it	 full-time	 for	 three	 years.	 The	
library	is	written	in	C++,	with	bindings	for	Python	
and	Fortran.	The	project,	agreed	upon	a	few	years	
ago,	was	largely	motivated	by	the	need	to	improve	
mmCIF	 handling	 in	 Refmac	 (Murshudov	 et	 al,	
2011)	 and	 BUSTER	 (Bricogne	 et	 al,	 2017)	 –	
refinement	 programs	 from	 the	 involved	
organizations.	 But	 the	 scope	 of	 the	 library	 is	 not	
limited	 to	 this.	The	scope,	still	 flexible	and	driven	
by	 the	needs	of	 involved	parties,	can	be	split	 into	
handling	of:	

• macromolecular	 models	 (coordinate	 and	
restraint	files),	

• data	 on	 a	 3D	 grid	 (CCP4	 file	 format	 for	
maps	and	masks),	

• and	 reflections	 (MTZ	 and	 SF	 mmCIF	
formats).	

To	 implement	 the	 above	 points	 the	 library	 also	
needs	to	handle:	

• the	CIF	syntax,	

• and	crystallographic	symmetry.	

All	 the	 listed	 areas	 include	 groundwork,	 such	 as	
reading	and	writing	 file	 formats,	and	higher-level	
functionality	 added	 on	 request	 from	 application	
developers.	 As	 an	 example	 of	 the	 latter,	 recently	
the	3D	grid	gained	functions	needed	to	determine	
the	bulk	solvent	area.	

The	 library	 is	 far	 from	 being	 finished	 and	 here	 I	
write	only	about	a	couple	things	that	I	have	learnt	
during	the	first	year	of	development.	

3

mmCIF	and	mmJSON	
mmCIF	 format,	 the	 primary	 format	 used	 by	 the	
wwPDB,	is	not	well	suited	for	web	applications.	At	
least	 that	 is	what	RCSB,	 PDBe	 and	PDBj	 think,	 as	
each	 of	 them	 developed	 own	 file	 format	 (MMTF,	
Binary	 CIF	 and	mmJSON,	 respectively)	 for	 use	 in	
web-based	 molecular	 viewers.	 MMTF	 is	 a	 binary	
format	with	 a	 complex	 compression	 scheme	 that	
reduces	the	data	transferred	from	the	server	by	a	
factor	 of	 four.	Binary	CIF	 is	 similar	 to	MMTF,	but	
preserves	 all	 the	 metadata	 from	 mmCIF	 at	 the	
expense	of	slightly	larger	size.	

mmJSON	is	quite	different	and	I	would	argue	it	 is	
the	most	 practical	 coordinate	 format	 for	most	 of	
applications.	 It	 is	 a	 simple	 translation	 of	 the	
mmCIF	 content	 into	 JSON.	 Tables	 as	 stored	 as	
columns	 ("tagA": ["value1", "value2"],
"tagB": [1, 2]).	 As	 a	 side-effect	 of	 writing	
data	 columns-wise,	 the	 transported	 (gzip-
compressed)	data	is	reduced	by	about	40%.	More	
importantly,	 the	 JSON	 format	 can	 be	 easily	 read	
and	 written	 in	 any	 programming	 language.	 Of	
course	CIF	precedes	JSON	by	a	decade,	and	it	was	
historically	 a	 good	 choice.	 But	 today	we	 can	 also	
see	 the	 cost	 (in	 man-years	 across	 multiple	
projects)	of	a	 format	with	a	niche	syntax.	So	even	
now,	 25	 years	 after	 the	 CIF	 syntax	was	 invented,	
adding	 mmJSON	 to	 the	 formats	 in	 the	 wwPDB	
archive	 (currently:	 PDB,	 mmCIF	 and	 PDBML)	
would	make	many	future	projects	easier.	

That	being	said,	 I	wrote	yet	another	parser	of	the	
CIF	 1.1	 syntax,	 basing	 on	 a	 library	 called	PEGTL.	
To	my	best	knowledge,	so	far	the	cif_api	library	
had	 the	 fastest	 CIF	 parser	 (Bollinger,	 2016),	
reportedly	 several	 times	 faster	 than	 iotbx.	 The	
Gemmi	parser	 is	3x	faster	than	cif_api	 (at	 least	
in	 the	hands	of	the	author).	At	 the	same	 time	 the	
fastest	 JSON	 parsers,	 hand-coded	 and	 carefully	
optimized,	 can	handle	 hundreds	 of	MB/s,	 several	

1	https://project-gemmi.github.io/	

	

	 14	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	13–15	

4

times	 more	 than	my	 CIF	 parser.	 So	 there	 is	 still	
plenty	of	room	for	optimization.	

One	way	 to	utilize	 the	speed	of	a	CIF	parser	 is	to	
do	a	PDB-wide	analysis	on	mmCIF	files.	For	this	I	
made	 a	 small	 utility	 (gemmi-grep)	 that	 prints	
values	of	selected	tags	in	CIF	files,	reading	input	at	
the	 rate	 of	 about	 100MB/s.	 It	 can	 go	 through	 a	
local	 copy	 of	 the	wwPDB	archive	 in	half	 an	hour,	
using	a	 single	processor	core	and	uncompressing	
files	 on	 the	 fly.	 The	 tool	 was	 used	 to	 gather	
various	 statistics	 from	 the	 PDB,	 such	 as	 MX	
software	statistics2.	

Space	group	settings	
Mapping	 space	 group	 notation	 to	 a	 set	 of	
operations	has	been	coded	many	times	before,	but	
I	still	pondered:	

1) What	 data	 should	 be	 tabulated	 and	 what	
should	be	recalculated?	

2) What	 space	 group	 settings	 should	 be	
included?	

Question	 1	 is	 approached	differently	 by	 different	
programs.	 Each	 space	 group	 settings	 must	 come	
with	 either	 the	 full	 list	 of	 operations,	 or	 with	 a	
minimal	 set	 of	 generators	 for	 the	 group,	 or	with	
something	 between	 (for	 example	 centering	
vectors	 can	 be	 listed	 separately	 to	 save	 space).	
Then	 the	 operations	 can	 be	 encoded	 in	 various	
ways.	After	considering	all	the	possibilities	I	went	
with	 the	 approach	 from	 SgInfo	 and	 sgtbx	 (and	
clipper	in	CCP4)	–	generating	operations	from	the	
overly	implicit	Hall	notation.		

Regarding	 question	 2,	 SgInfo/sgtbx	 (Grosse-
Kunstleve	et	al,	2002)	and	International	Tables	for	
Crystallography	 (ITfC)	 vol.	 B3	 have	 a	 list	 of	 530	
settings	 (527	 distinct	 settings;	 three	 settings	 in	
the	group	68	are	given	with	two	different	names).	
This	 list	 is	 used	 by	 many	 programs,	 notably	 by	

5

Spglib,	 which	 seems	 to	 be	 more	 popular	 than	
sgtbx	among	physicists.	

CCP4	uses	a	file	called	syminfo.lib	that	is	based	
on	 an	 older	 file	 called	 symop.lib	 and	 the	 data	
from	sgtbx.	It	includes	the	530	settings	and	a	few	
more.	 Similarly,	 the	OpenBabel	 library	 also	 has	 a	
file	listing	symmetry	settings	and	operations,	with	
530	 +	 14	 settings.	 The	 extra	 14	 came	 from	 the	
COD	 database.	 Some	of	 them	are	 described	 in	 “A	
Hypertext	 Book	 of	 Crystallographic	 Space	 Group	
Diagrams	 and	 Tables”4	 (for	 example	 C-centered	
tetragonal	 space	 groups)	 and	 mentioned	 in	 the	
latest	edition	of	ITfC	vol.	A5	(which,	unlike	the	vol.	
B,	 uses	 new	 naming,	 e.g.	 “C	 -4	 2	 g1”).	 All	 the	
differences	 can	 be	 confusing,	 but	 have	 little	
practical	 importance	 in	MX	 software.	 So	 for	 now	
Gemmi	 just	 includes	 the	 settings	 from	
syminfo.lib.	

Adding	new	space	group	settings	requires	coming	
up	with	a	Hall	symbol.	ITfC	vol.	B	writes	about	an	
unambiguous	 method	 to	 select	 the	 Hall	 symbol.	
The	 method	 involves	 sorting	 operations	 into	 “a	
strictly	 prescribed	 order	 based	 on	 the	 shape	 of	
their	 Seitz	 matrices”,	 but	 the	 details	 seem	 to	 be	
gone	from	the	Internet.	In	this	situation	I	manually	
picked	Hall	symbols	for	settings	absent	in	ITfC	vol.	
B.		

Technicalities	
Gemmi	 is	 written	 in	 C++	 (no	 Python,	 although	
most	of	 the	 functions	will	have	Python	bindings).	
For	the	sake	of	portability	 it	uses	C++11,	 ignoring	
new	features	of	C++14	and	17.	

Many	C++	libraries	are	header-only,	which	makes	
them	 trivial	 to	 install.	 So	 far	 Gemmi	 is	 also	 a	
header-only	 library,	 but	 it	 may	 change	 as	 the	
library	 grows.	 Still,	 some	 parts	 (CIF	 parser,	
symmetry	 library)	 will	 stay	 header-only.	 This	
makes	integration	much	easier.	 If	 a	program	only	

3(International	 Tables)	 Volume	 B	 home	 page.	
urn:isbn:978-1-4020-8205-4	
doi:10.1107/97809553602060000108	

5(International	Tables)	Volume	A	home	page.	
urn:isbn:978-0-470-97423-0	
doi:10.1107/97809553602060000114	

2	https://project-gemmi.github.io/pdb-stats/	 4	http://img.chem.ucl.ac.uk/sgp/mainmenu.htm	

	

	 15	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	13–15	

6

needs	to	know	space	group	operations,	one	can	just	copy	a	single	file	(gemmi/symmetry.hpp)	to	their	
project,	and	that	is	all.	

Python	bindings	are	generated	with	pybind11,	which	is	inspired	by	Boost.Python	but	 is	smaller,	 faster	
to	compile	and	easier	to	use.	Python	bindings	work	with	Python	2.7	and	3.x,	with	CPython	and	PyPy.	The	
latest	development	version	can	be	downloaded,	compiled	and	installed	with	a	single	pip	command:		

pip install git+https://github.com/project-gemmi/gemmi.git	

We	also	need	bindings	for	Fortran	2003;	the	work	on	it	has	just	started.	

Finally,	 as	we	all	observe	more	and	more	software	moving	 to	web	browsers,	 it	would	 be	nice	 to	port	
Gemmi,	 or	 parts	 of	 it,	 to	 either	 JavaScript	 or	WebAssembly.	 This	 would	 benefit	 some	 of	 the	 existing	
JavaScript	programs,	 in	particular	UglyMol.	The	relatively	small	size	of	the	C++	code	base	should	help,	
but	the	details	are	yet	to	be	investigated.	

Acknowledgements	
The	project	is	funded	by	Global	Phasing	Ltd.	and	CCP4,	overseen	by	Eugene	Krissinel,	Garib	Murshudov	
and	 Gerard	 Bricogne,	 and	 was	 helpfully	 discussed	with	 many	 other	members	 of	 CCP4	 and	 GPhL	 (in	
particular	with	Andrey	Lebedev,	Claus	Flensburg,	Clemens	Vonrhein).	

References	
Murshudov	GN,	Skubák	P,	Lebedev	AA,	Pannu	NS,	Steiner	RA,	Nicholls	RA,	Winn	MD,	Long	F,	Vagin	AA	
(2011).	Acta	Cryst.	D:	67,	355	

Bricogne	G,	Blanc	E,	Brandl	M,	Flensburg	C,	Keller	P,	Paciorek	W,	Roversi	P,	Sharff	A,	Smart	OS,	Vonrhein	
C,	Womack	TO	(2017).	Cambridge,	United	Kingdom:	Global	Phasing	Ltd.	

Bollinger	JC	(2016),	J.	Appl.	Cryst.	(2016).	49,	28	

Grosse-Kunstleve	RW,	Sauter	NK,	Moriarty	NW,	Adams	PD	(2010).	J.	Appl.	Cryst.	35,	126	

	

	

	 16	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	16–20	

1

Overfitting	to	Ramachandran	and	geometry	criteria	in	the	cryoEM	Model	Challenge	
Christopher	J	Williams,	David	C.	Richardson,	and	Jane	S	Richardson	

Duke	University	 	

2

We	 are	 interested	 in	 the	 extent	 and	
effects	of	overfitting	to	validation	criteria,	
and	 the	EM	Model	Challenge1	provided	a	
useful	 dataset	 to	 analyze	 overfitting.	 The	
dataset	 was	 suitable	 because,	 for	 each	
modeler	 group,	 it	 contains	 multiple	
depositions	 of	 very	 different	 structures	
using	 very	 similar	 methods.	 This	 allows	
us	 to	 construct	 a	 better	 sense	 of	 each	
group’s	overall	behavior.	However,	many	
modelers	are	willing	–	quite	reasonably	–	
to	 skip	 over	 loops	 and	 other	 difficult	
regions.	 This	 prevents	 us	 from	
constructing	 a	 truly	 complete	 picture	 of	
how	their	modeling	tools	behave.	

Overfitting	to	Ramchandran	
To	 assess	 overfitting	 to	 Ramachandran	
criteria,	 for	 each	 modeler	 group,	 we	
accumulated	all	the	Ramachandran	points	
from	their	first	model	for	each	target	into	
a	 single	 distribution.	 	 The	 resulting	
Ramachandran	 distributions	 are	
strikingly	 varied.	 	 Appropriately	 to	 a	
modeling	challenge,	the	modelers	seem	to	
have	 been	 very	 aggressive	 in	 using	
diverse	methods.	 	However,	 almost	 all	 of	
these	 methods	 have	 resulted	 in	 some	
degree	 of	 overfitting	 to	 Ramachandran	
criteria.	

Figure	 1	 shows	 typical	 patterns	 of	
Ramachandran	 overfitting	 within	 the	
cryoEM	 Challenge	 dataset.	 	 Severals	
groups	 restrained	 their	 Ramachandran	
distribution	 to	 a	 different	 –	 and	 much	
stricter	 –	 set	 of	 contours	 than	 our	
Top8000-derived	 set	 (Richardson	 2013).		
Group	 EM119	 (1a)	 shows	 this	 alternate	
distribution	most	strongly.		Group	EM120	
(1b)	 also	 shows	 restraint	 to	 contours	

Figure	 1:	 Ramachandran	 diagrams	 showing	 unusual	
distributions.	 Ramachandran	 distributions	 of	 all	 general-case	
residues	from	cryoEM	Challenge	groups	EM119	(a),	EM120	(b),	
EM130	(c),	and	EM189	(d)	 show	various	types	and	degrees	of	
overfitting	 to	 Ramachandran	 criteria.	 The	 Ramachandran	
distribution	 from	 a	 deposited	 PDB	 structure,	 3ja8,	 shows	 a	
similar	 pattern	 of	 overfitting	 (e).	 Our	 standard	 Top8000	
Ramachandran	 distribution,	 with	 heat-mapped	 population	
density,	is	provided	for	comparison	(f).	

1(http://challenges.emdatabank.org/?q=model_challenge)	

	

	 17	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	16–20	

3

within	 the	 Favored	 bounds,	 with	 the	 addition	 of	
alternating	 patches	 of	 highly-populated	 and	
empty	regions.		Group	EM130	(1c)	shows	an	edge-
tracing	 effect,	 where	 the	 edge	 of	 the	 Favored	
region	is	unusually	highly	populated,	possibly	due	
to	 Ramachandran	 restraints	 moving	 Allowed	
residues	 until	 they	 cross	 just	 into	 the	 Favored	
region,	 or	 possibly	 due	 to	 an	 energy	 that	
particularly	 favors	 certain	 atomic	 contact	
distances.	 	 Group	 EM189	 (1d)	 shows	 an	 ultra-
restrained	 alpha	helix	 region,	which	might	 be	 an	
extreme	version	of	the	patchy	regions	in	1b.	 	Our	
standard	 Ramachandran	 distribution,	 with	 heat-
mapped	 population	 density,	 is	 provided	 for	
comparison	(1f).	

We	had	expected	the	edge-tracing	phenomenon	in	
1c	to	be	relatively	common,	but	 in	fact	only	a	few	
groups	 showed	significant	 tracing	 of	our	Favored	
contours.	 	 It	 should	 be	 noted,	 however,	 that	
EM119	 (1a)	 does	 show	 an	 edge	 tracing	 effect	 at	
the	 bounds	 of	 their	 chosen	 contours.	 	 We	 also	
observed	that	many	distributions	(e.g.	1b	and	1c)	
showed	a	fairly	hard	ϕ	cutoff	at	about	-60	degrees.		
This	 leaves	 the	rightmost	areas	of	both	 the	alpha	
and	the	beta	regions	unnaturally	empty.	

These	 peculiar	 distributions	 are	 by	 no	 means	
limited	 to	 the	 sometimes-speculative	 software	 of	
the	 cryoEM	Challenge,	 however.	 Figure	 1e	shows	
the	 Ramachandran	 distribution	 of	 3ja8,	 a	 PDB-
deposited	 EM	 structure	 from	 2015.	 	 This	
distribution	 shares	many	 characteristics	with	 1a,	
including	 tightened	 contours	 within	 the	 Favored	
region,	an	additional	horizontal	band	below	alpha,	
and	 a	 strong	 edge-tracing	 effect	 in	 beta.	 	 The	
overfitting	 that	 occurred	 during	 the	 cryoEM	
Challenge	 is	 also	 seen	 in	 final	 deposited	 cryoEM	
structures.	

Overfitting	of	covalent	geometry	 	
We	also	assessed	overfitting	to	covalent	geometry	
criteria.	 For	 each	 group,	 we	 performed	 covalent	
geometry	 validation	 with	 mmtbx.mp_geo.	 For	
each	mainchain	bond	or	angle	(those	involving	N,	
CA,	 C,	O,	 and	CB),	we	determined	 the	 percentage	

4

of	 the	 total	 population	 in	 each	 1-standard-
deviation	 bin	 from	 the	 ideal	 value,	 making	 no	
distinction	 between	 positive	 and	 negative	
deviations	 from	 ideal.	 If	 the	 covalent	 geometry	
deviations	 followed	 a	 normal	 distribution,	 the	
populations	 of	 the	 first	 three	 bins	 would	 be	
roughly	68,	27	and	4%.	A	deviation	of	4σ	or	more	
is	considered	an	outlier.	

Figure	2	shows	some	representative	distributions	
for	covalent	bond	lengths	on	the	left	and	angles	on	
the	right.	Bond	lengths	were	 typically	very	highly	
restrained	to	within	1	sigma	of	ideal,	as	in	EM119	
and	 EM130,	 though	 some	 groups	 like	 EM120	
clearly	 followed	 some	other	 pattern.	 Bond	 angles	
were	generally	 less	tightly	 restrained	and	slightly	
closer	 to	 a	 normal	 distribution,	 see	 again	 EM119	
and	 EM130,	 but	 real	 approximations	 of	 a	 normal	
distribution	were	very	rare.	

Effects	of	overfitting	 	
Validation	 tools	 that	 modelers	 were	 not	
optimizing	 against,	 such	 as	 CaBLAM	 (Williams,	
2018),	 give	 us	 suggestive	 evidence	 of	 structural	
harm	 caused	 by	 overfitting.	 Figure	 3	 shows	 one	
such	 example.	 Target	 T0002	 (PDB	 3j9i,	 a	
proteasome)	 contains	 a	 cluster	 of	 covalent	
geometry	 outliers	 (3a)	around	Ala107	of	 chain	1.	
In	 EM130’s	 model,	 these	 geometry	 outliers	 have	
been	resolved,	but	at	 the	cost	of	 introducing	a	Cα	
geometry	 outlier	 identified	 by	 CaBLAM	 (3b).	 The	
Cα	 geometry	 outlier	 is	 not	 very	 far	 from	 an	
allowed	conformation,	so	permitting	slightly	more	
flexibility	 in	 the	 surrounding	 covalent	 geometry	
might	prevent	this	distortion.	

A	more	dramatic	example	of	structural	harm	from	
overfitting	 is	 the	 placement	 or	 refinement	 of	
Ramachandran	 points	 into	 the	 wrong	 favored	
regions,	 which	 we	 have	 observed	 in	 both	 the	
cryoEM	Challenge	models	and	in	the	PDB.	Figure	4	
shows	an	 alpha	helix	 from	PDB	3ja8	with	 a	 clear	
and	 severe	 modeling	 error	 at	 Leu234	 (a).	 This	
modeling	 error	 placed	 the	 Ramachandran	 point	
for	 Leu234	 in	 or	 near	 the	 beta	 region	 (b),	 and	
refinement	moved	it	into	the	cluster	at	the	edge	of	

	

	 18	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	16–20	

Figure	2:	Population	distributions	 for	covalent	bond	geometry	of	cryoEM	Challenge	models.	X-axis	is	number	of	
standard	deviations	from	ideal	(4	is	the	outlier	cutoff),	y-axis	is	percent	of	population.	Groups	EM119	and	EM130	
show	highly	restrained	distributions	typical	of	the	challenge	models.	Group	EM120	shows	an	unusual	distribution	
suggestive	of	either	modeling	errors	or	a	mismatch	between	geometry	assumptions.	

Figure	3:	Resolution	and	introduction	of	geometry	outliers	 in	cryoEM	Challenge	target	T0002	by	group	EM130.	
The	target	(a)	contains	severe	bond	angle	outliers	around	chain	1	Ala107.	The	model	(b)	resolves	these	outliers	
but	introduces	a	Cα	geometry	outlier	–	probably	an	unrealistic	Cα	virtual	angle	–	in	the	process.	The	arrangement	
of	the	outliers	suggests	but	cannot	prove	that	over-idealization	of	covalent	geometry	lead	to	distorted	Cα	geometry	
in	the	model.	

	

	 19	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	16–20	

5

the	 beta	 contours.	 Overfitting	 to	 Ramachandran	
criteria	 has	 thus	 compounded	 an	 existing	 error	
and	hidden	it	from	casual	validation.	

Discussion	
Given	the	overfitting	to	Ramachandran	criteria	 in	
the	 challenge	 models,	 the	 simultaneous	 heavy	
restraining	of	 covalent	geometry	criteria	came	 as	
a	surprise.	It	should	not	be	possible	to	distort	the	
Ramachandran	 distribution	 in	 the	 ways	 seen	 in	
Figure	 1	 without	 consequences,	 and	 bond	
geometry	 seemed	 a	 likely	 place	 to	 dump	 the	
consequences.	 And	 indeed,	 the	 geometry	
distributions	of	group	EM120	show	the	sort	of	off-
ideal	 peaks	 we	 might	 expect	 if	 small	 geometry	
deviations	 were	 taking	 up	 the	 strain	 of	 an	

6

artificially	 tight	 Ramachandran	 distribution.	
However,	EM120	 is	the	exception	rather	than	 the	
rule,	 and	 bond	 geometries,	 especially	 bond	
lengths,	are	highly	restrained	for	almost	all	of	the	
challenge	 models.	 Both	 Ramachandran	 and	
geometric	 criteria	 are	 being	 overfit,	 and	 this	
overfitting	 affects	 the	 implicit	 or	 explicit	 balance	
of	 fit-to-map	 and	 fit-to-geometry	 in	 the	
refinement	 target	 function.	 As	 we	 work	 as	 a	
community	to	assess	and	address	overfitting,	one	
of	the	questions	we	will	have	to	explore	is:	where	
else	do	the	consequences	go?	

Figure	4:	Compounding	and	obfuscation	of	a	secondary	structure	error	in	3ja8.pdb.	An	incorrect	cis-peptide	and	
distorted	alpha	helix	(a)	placed	the	Ramachandran	point	for	Leu234	near	the	beta	region	(b).	During	refinement,	
overfitting	 to	 Ramachandran	 criteria	moved	 this	 point	 solidly	 into	 beta,	 rather	 than	 correcting	 the	 underlying	
modeling	error.	

	

	 20	

SHORT Communications

Computational	Crystallography	Newsletter	(2018).	9,	16–20	

7

References	
Richardson,	JS,	Keedy,	DA,	Richardson,	DC	(2013).	“The	Plot”	Thickens:	More	Data,	More	Dimensions,	
More	Uses.	In	Biomolecular	Forms	and	Functions:	A	Celebration	of	50	Years	of	the	Ramachandran	Map	
(pp.	46-61).	

Williams,	CJ,	Headd,	JJ,	Moriarty,	NW,	Prisant,	MG,	Videau,	LL,	Deis,	LN,	Verma,	V,	Keedy,	DA,	Hintze,	BJ,	
Chen,	 VB,	 Jain,	 S,	 Lewis,	 SM,	 Arendall,	 WB,	 Snoeyink,	 J,	 Adams,	 PD,	 Lovell,	 SC,	 Richardson	 JS,	
Richardsdon	 DC.	 (2018)	 “MolProbity:	 More	 and	 better	 reference	 data	 for	 improved	 all-atom	
structure	validation”,	Protein	Science,	27(1),	293-315.	

	
	
	
	
	
	

	

	 21	Computational	Crystallography	Newsletter	(2018).	9,	21–24	

ARTICLES

1

	Cβ 	deviations	and	other	aspects	in	Amber	vs	CDL	refinements	

Jane	Richardson	and	David	Richardson,	Duke	University	

2

Background	
The	 Amber	 force-field	 (Case	 2016)	 has	 been	
implemented	 for	 use	 in	 Phenix	 refinement.	 Nigel	
Moriarty	 and	 David	 Case	 have	 been	 tuning	 and	
extensively	 testing	 this	 new	 feature.	 In	
collaboration	 with	 that	 effort,	 the	 Duke	 Phenix	
team	 is	 looking	 at	 individual	 results	 from	 paired	
refinements	that	use	Amber	vs.	the	current	default	
refinement	 that	 includes	 the	 CDL	 (Conformation-
Dependent	 Library;	 Moriarty	 2014).	 This	 article	
describes	our	most	interesting	results	so	far.	

Analysis	of	parallel	refinement	results	for	1xgo	
The	 1xgo	 example	 at	 3.5Å	 resolution	 is	 an	 ideal	
test	 case	 for	 our	 purposes	 because	 there	 is	 an	
essentially	 identical	 structure	 available	 at	 high	
resolution	 to	define	 the	correct	answers	 for	 local	
conformations.	 1xgo	 ended	up	 scoring	 somewhat	
better	on	most	measures	after	Amber	refinement	
than	 after	 CDL	 refinement,	 as	 seen	 in	 the	
MolProbity-chart	 stoplight	comparisons	 in	Figure	
1,	 which	 also	 shows	 the	 original	 deposited	 1xgo	
(Tahirov	1998)	and	the	1.75Å	1xgs	structure	done	
at	 the	 same	 time	 of	 the	 same	 molecule	 in	 a	

3

different	 space	 group	 (Tahirov	 1998).	 The	 CDL	
refinement	 completely	 idealizes	 all	 the	 covalent	
geometry	with	tight	restraints,	rotamers	are	about	
equal	 and	 Amber	 does	 better	 on	 both	
Ramachandran	and	clashscore.	

However,	there	was	concern	that	six	residues	had	
Cβ-deviation	 outliers	 (≥0.25Å)	 after	 Amber	
refinement	and	whether	those	reflected	any	issues	
with	 the	 force-field	 terms.	 Figure	 2	 below	 shows	
the	 "bullseye"	 Cβ deviation	 plots	 for	 all	 four	
coordinate	 sets,	 centered	 at	 the	 ideal	
Cβ and	with	outliers	emphasized.	 The	 CDL-refine	
plot	 is	 tight	 to	 an	 extreme	 degree,	 perhaps	
justifiable	 at	 low	 resolution	 but	 debatable.	 Even	
without	an	artificial	Cβdev	restraint,	if	Tau	(N-Cα-
C),	 N-Cα-Cβ and	 C-Cα-Cβ	 angles	 are	 all	 tightly	
restrained	 there	 will	 be	 no	 Cβdev	 outliers.	 The	
Amber	plot	 is	a	bit	on	the	loose	side,	but	shows	a	
good	scatter	with	no	evidence	of	target	anomalies	
and	 extends	 farthest	 out	 in	 the	 direction	 that	 is	
indeed	 most	 vulnerable.	 The	 crucial	 issue	 is	
whether	 those	 outliers	 are	 just	 being	 allowed	 by	
too-lenient	 restraints	 or	 are	 diagnosing	 real	

				Figure	1:		Comparison	of	MolProbity	summary	validation	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

	

	 22	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	21–24	
	

4

problems	 –	 so	 we	 looked	 at	 them	 all	 and	
compared	 each	 with	 our	 expectations,	 with	
electron	 density	 and	 especially	 with	 the	 1xgs	
1.75Å	structure.	

Of	course	we	will	need	to	analyze	more	cases,	but	
it	 is	remarkable	for	6	arbitrary	examples	of	some	
effect	to	all	point	consistently	and	convincingly	to	
the	 same	 conclusion.	 Each	 one	 of	 the	 outlier	
residues	 has	 a	 real	 problem	 uncorrectable	 by	
downhill	refinement,	with	either	 the	sidechain	or	
the	backbone	or	both	in	the	wrong	local-minimum	
conformation.	This	flagging	of	outliers	is	the	most	
important	purpose	of	validation:	to	support	either	
people	or	 software	 in	 testing	distinct	alternatives	
to	 correct	 conformational	 misfittings	 that	 need	
not	just	a	nudge	but	a	big	change.	

The	4-part	comparison	in	Figure	3	illustrates	Leu	
204,	 the	 simplest	 of	 the	 6	 Amber	 Cβdevs,	where	
the	rotamer	is	wrong	and	pure	refinement	cannot	
correct	 it.	 The	 original	 model-building	 for	 1xgo	
tried	 too	hard	 to	 push	all	 atoms	 into	 the	density,	

5

resulting	in	a	curled-up	sidechain	with	a	near-zero	
chi1	angle.	The	high-resolution	1xgs	structure	has	
completely	 unambiguous	 density	 showing	 Leu	
204	 with	 an	 mt	 conformation,	 the	
overwhelmingly	 most	 common	 Leu	 rotamer	
(Hintze	2016).	Both	refinements	shifted	enough	to	
lose	the	clash	that	was	in	1xgo,	but	the	Cβdev	from	
Amber,	as	well	as	the	rotamer	outlier,	signal	even	
at	3.5A	that	this	sidechain	needs	to	be	rebuilt.	

Alanine	 is	 seldom	 a	 Cβdev	 outlier,	 but	 the	 well-
ordered	 3.5Å	 electron	 density	 for	 the	 Ile-Gly-
Ala194-Gly	semi-extended	sequence	just	does	not	
have	 enough	 information	 content	 to	 specify	 its	
conformation	correctly.	As	 seen	 in	Figure	4,	both	
refinements	 resolve	 the	 clashes	 in	 1xgo,	 but	 do	
not	 improve	 the	 backbone	 conformation,	 as	
reported	by	CaBLAM	outliers	(Williams	2018)	and	
by	 Amber's	 Ala	 Cβdev.	 With	 all	 backbone	 COs	
clear	 in	 the	 density	 at	 1.75Å,	 1xgs	 identifies	 a	
favorable,	 unambiguously	 correct	 conformation.	
To	achieve	that,	φ,ψ	angles	change	by	at	least	30°	

Figure	2:		Comparison	of	"bullseye"	plots	of	Cβ	deviation	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

Figure	3:		Comparison	of	Leu	204	rotamer	outlier	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

	

	 23	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	21–24	

6

in	each	of	the	4	residuesand	ψ	of	Gly193	and	φ of	
Ala194	change	more	than	120°.	

For	 Leu	 253	 on	 a	 helix,	 both	 sidechain	 rotamer	
and	backbone	shifts	are	involved	(see	Figure	5).	In	
the	 original	 1xgo	 model,	 Leu	 253	 is	 in	 the	 very	
low-population	pt	 rotamer,	which	 unsurprisingly	
is	 maintained	 in	 both	 refinements	 although	
slightly	 shifted.	 However,	 the	 1xgs	 structure	
shows	 very	 clear	 density	 for	 the	 highest-
population	 mt	 rotamer	 and	 that	 conformation	
looks	 as	 though	 it	 would	 have	 fit	 the	 low-
resolution	density	 just	as	 (moderately)	well	as	pt	
did.	 The	 helix	 conformation	 is	 very	 non-ideal	 in	
1xgo,	 with	 a	 distorted	 overall	 shape	 and	 a	
Ramachandran	 outlier.	 Both	 refinements	 resolve	
the	numerous	clashes	while	rotamer	outliers	stay	
similar.	 CDL	 refinement	 does	 not	 move	 the	
backbone;	 Amber	 improves	 it	 toward	 ideality,	

7

although	still	not	as	regular	as	shown	by	the	high-
resolution	1xgs.	

In	 order	 to	understand	better	what	 each	of	 these	
refinement	 protocols	 can	 and	 cannot	 do,	 our	
group	 will	 need	 to	 examine	 details	 where	
rotamers	 or	 clashes	 have	 improved	 with	 pure	
refinement.	 The	 questions	 are	 whether	 distinct	
conformations	 can	 ever	 be	 interconverted	 and	 in	
which	 circumstances	 the	 changes	 from	 outlier	 to	
allowed	 rotamer	 (or	 Ramachandran)	 have	 only	
shifted	across	a	close	borderline	versus	when	they	
have	indeed	discovered	the	correct	rotamer.	

The	bottom	line	
Our	 overall	 conclusion	 is	 that	 refinement	 cannot	
be	 expected	 to	 correct	 local	 conformations	 in	 the	
wrong	 local	 minimum,	 especially	 at	 low	
resolution.	 Ideally,	 as	 many	 as	 possible	 of	 those	
problems	 should	 be	 corrected	 early-on,	 either	 by	

		Figure	4:		Comparison	of	Ile-Gly-Ala194-Gly	backbone	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

	Figure	5:		Comparison	of	Leu	253	on	helix	for	1xgo,	CDL	refinement,	Amber	refinement	and	1xgs.	

	

	 24	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	21–24	

8

manual	 rebuilding	or	by	an	automated	procedure	
that	 evaluates	 distinct	 alternatives.	 It	 is	 very	
counterproductive	to	sweep	such	problems	under	
the	 rug	 by	 artificially	 adding	 terms	 that	 disallow	
validation	 outliers.	 The	 CDL	 refinement	 corrects	
all	 geometry	 outliers,	 preventing	 them	 from	
showing	 problems,	 but	 does	 leave	 backbone	 and	
some	steric	flags.	The	Amber	refinement	not	only	
corrects	 clashes	 but	 improves	 van	 der	 Waals	
contacts	 (even	 among	 incorrect	 rotamers	 or	
backbone!),	 but	 allows	 geometry	 to	 report	
problems.	A	strategy	partway	in	between	might	be	
even	better.	However,	we	feel	very	positive	about	
the	Amber	target	after	looking	at	these	details:	if	it	

9

were	 presented	 with	 a	 model	 where	 most	 big	
misfittings	 had	 been	 corrected,	 it	 would	 do	 an	
excellent	 job	 of	 tuning	 the	 details	 correctly.	
Refinement	 should	 work	 honestly	 on	 all	
independent	 single	 terms,	 while	 the	 whole	 point	
of	 combined,	 non-refined	 validation	 criteria	
(Rfree,	rotamers,	Ramachandran,	Cbdev,	CaBLAM,	
RNA	backbone	conformers	and	ribose	puckers,	…)	
is	 to	flag	places	that	probably	need	 large	changes	
between	 barrier-separated	 conformations.	 We	
should	 not	 try	 to	 hide	 those	 flags	 artificially,	 but	
should	 develop	better	 procedures	 for	 using	what	
they	tell	us.	

10

References:	
Case	DA,	Betz	RM,	Cerutti	DS,	Cheatham	TE	III,	Darden	TA,	Duke	RE,	Giese	TJ,	Gohlke	H,	Goetz	AW,	
Homeyer	N,	Izadi	S,	Janowski	P,	Kaus	J,	Kovalenko	A,	Lee	TS,	LeGrand	S,	Li	P,	Lin	C,	Luchko	T,	Luo	R,	
Madej	B,	Mermelstein	D,	Merz	KM,	Monard	G,	Nguyen	H,	Nguyen	HT,	Omelyan	I,	Onufriev	A,	Roe	DR,	
Roitberg	A,	Sagui	C,	Simmerling	CL,	Botello-Smith	WM,	Swails	J,	Walker	RC,	Wang	J,	Wolf	RM,	Wu	X,	
Xiao	L,	Kollman	PA	(2016),	AMBER	2016,	University	of	California,	San	Francisco	

Hintze	BJ,	Lewis	SM,	Richardson	JS,	Richardson	DC	(2016)	"MolProbity's	ultimate	rotamer-library	
distributions	for	model	validation",	Proteins:	Struc	Func	Bioinf	84:	1177-1189	

Moriarty	NW,	Adams	PD,	Karplus	PA	(2014)	Details	of	the	conformation-dependent	library,	Comput	
Crystallogr	Newsletter	5:	42-49	

Tahirov	TH,	Oki	H,	Tsukihara	T,	Ogasahara	K,	Yutani	K,	Ogata	K,	Izu	Y,	Tsunasawa	S,	Kato	I	(1998)	
Methionine	aminopeptidase	from	hyperthermophile	Pyrococcus	furiosus,	J	Mol	Biol	284:	101-124	

Williams	CJ,	Hintze	BJ,	Headd	JJ,	Moriarty	NW,	Chen	VB,	Jain	S,	Prisant	MG	Lewis	SM,	Videau	LL,	Keedy	
DA,	Deis	LN,	Arendall	WB	III,	Verma	V,	Snoeyink	JS,	Adams	PD,	Lovell	SC,	Richardson	JS,	Richardson	DC	
(2018)	MolProbity:	More	and	better	reference	data	for	improved	all-atom	structure	validation,	Protein	
Science	27:	293–315	

	

	

	

	 25	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

1

	A	few	benchmark	tests	of	various	compilers	on	Linux	and	Windows.	
Robert	D	Oeffner	

Cambridge	Institute	for	Medical	Research,	University	of	Cambridge,	Cambridge	Biomedical	Campus	
Wellcome	Trust/MRC	Building,	Hills	Road,	Cambridge	CB2	0XY	

Correspondence	email:	rdo20@cam.ac.uk	

2

Introduction	
The	Phenix	 crystallographic	 software	 suite	 is	
deployed	on	three	different	platforms;	MacOS,	
Windows	and	Linux.	In	this	article	we	present	
the	 results	 of	 a	 few	 benchmark	 tests	 of	 the	
Phaser	 executable	 produced	 by	 compilers	
from	GNU,	 Intel	and	Microsoft.	The	platforms	
we	test	on	are	Ubuntu	16	and	Windows	10	as	
well	 as	 Windows	 10	 with	 Windows	
Subsystem	 for	 Linux	 (WSL)	 running	 Ubuntu	
16.	

Motivation	
We	 were	 interested	 to	 determine	 which	
platform	 and	 compiler	 provides	 the	 fastest	
performance	 of	 the	 Phenix	 software.	
Moreover,	 benchmark	 tests	 on	 the	 WSL	
platform	 are	 of	 interest	 given	 it	 allows	
running	 Linux	 executables	 directly	 on	
Windows	without	the	overhead	of	starting	up	
a	 virtual	 machine,	 but	 it	 might	 incur	 a	
performance	cost.	

We	are	interested	in	the	overall	time	taken	to	
run	executables,	 i.e.	the	wall	time.	Phenix	 is	a	
software	 suite	 consisting	 of	 python	 scripts	
and	C++	code	compiled	 into	python	modules.	
It	is	the	choice	of	C++	compilers	we	test	here.	
We	 focus	 on	 Phaser	 which,	 like	 the	 rest	 of	
Phenix,	depends	on	the	CCTBX	library.	During	
the	 time	 of	 performing	 the	 benchmark	 tests	
BIOS	and	OS	patches	 for	 the	"Meltdown"	bug	
for	 Intel	 CPUs	 became	 available	 (see	Patches	
in	 the	appendix).	Additional	benchmark	tests	
for	the	patched	platforms	have	therefore	been	
included.	

3

Compilers	and	platforms	
We	tested	the	platforms	and	compilers	listed	
in	Table	1.	

The	specific	versions	of	the	operating	systems	
are:	

• Ubuntu	16.04.3	kernel	4.10.0-28-generic	
• Windows	10,	version	1709,	build	16299.125	
• Ubuntu	16.04.3	kernel	4.4.0-109-generic	
• Windows	10,	version	1709,	build	16299.192	

The	 first	 two	operating	 systems	 in	 the	above	
list	were	 not	 patched	 for	 the	 Intel	Meltdown	
bug	whereas	 the	 last	 two	have	been	 patched	
for	the	Intel	Meltdown	bug	as	has	the	BIOS	on	
the	PC.	

The	 Visual	 Studio	 2008	 compiler	 is	 used	 for	
Phenix	 Windows	 builds	 due	 to	 it	 using	 the	
same	C-runtime	as	the	python	executable	that	
is	 deployed	 with	 the	 python	 interpreter	
distributed	from	python.org.		

The	 Visual	 Studio	 2015	 compiler	 is	 used	 for	
building	 Python	 3	 on	 Windows.	 As	 Phaser	
distributed	 with	 Phenix	 eventually	 will	 be	
migrated	 to	Python	3	this	 compiler	or	newer	
ones	are	of	interest.		

The	MinGW-W64	 Gnu	 5.3.0	 compiler	 is	 used	
for	 building	 Phaser	 distributed	 with	 CCP4	
version	7	on	Windows.	This	is	a	Gnu	compiler	
ported	 to	Windows,	which	 is	of	 interest	 as	 it	
comes	 with	 the	 Gnu	 implementation	 	 of	 the	
C++	 Standard	Template	Library	 and	OpenMP	
library.		

The	 Intel	 Parallel	 Studio	 XE	 2018	 for	 Linux	
compiler,	unlike	the	others,	 is	not	 free,	but	 is	
reputed	to	produce	very	fast	executables.	

	

	 26	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

C++	Compiler	 Platforms	(64	bit)	 Comment	
Visual	 Studio	 2008	 (VS2008)	
by	Microsoft	

Windows	10	 used	 for	 current	 Phenix	 build	 with	
python	2	on	Windows	

Visual	 Studio	 2015	 (VS2015)	
by	Microsoft	

Windows	10	 to	 be	 used	 in	 future	 for	 Phenix	 build	
with	python	3	on	Windows	

MinGW-W64	g++	version	5.3.0	
(MinGW	5.3.0)	

Windows	10	 used	for	CCP4	Windows	build	of	Phaser		

	
Intel	 Parallel	 Studio	 XE	 2018	
for	Linux	(Intel)	

Native	Ubuntu	16.04,	 	
uses	 the	 C++	 Standard	 Template	
Library	from	the	Gnu	compiler	

Ubuntu	 16.04	 on	 WSL	 on	
Windows	10	

	
g++	 version	 5.4.0	 for	 Linux	
(Gnu	5.4.0)	

Native	Ubuntu	16.04	 	
default	on	Ubuntu	16.04		

Ubuntu	 16.04	 on	 WSL	 on	
Windows	10	

	
g++	 version	 4.4.7	 for	 Linux	
(Gnu	4.4.7)	

Native	Ubuntu	16.04	 	
default	 on	Centos	 6,	 build	 of	 Phaser	 in	
Phenix	Ubuntu	 16.04	 on	 WSL	 on	

Windows	10	
	

Table	1:	List	of	compilers	and	platforms	used	for	benchmarking.		Abbreviations	in	bold	are	used	in	subsequent	figures	
and	tables	denoting	the	executables	produced	by	the	respective	compilers.	

4

The	Gnu	5.4.0	 compiler	 suite	 for	Linux	 is	 the	
default	on	Ubuntu	16.04.	 	 It	 can	therefore	be	
anticipated	that	a	user	of	Phenix	will	use	this	
compiler	if	rebuilding	Phenix	from	sources	on	
Ubuntu.	 Given	 the	 popularity	 of	 Ubuntu	
amongst	other	flavours	of	Linux	this	compiler	
version	is	therefore	relevant	to	benchmark.	

The	 g++	 4.4.7	 compiler	 for	 Linux	 is	 what	 is	
currently	 used	 for	 building	 Phenix	 for	 Linux	
on	 the	Centos6	platform.	 The	 combination	of	
this	compiler	and	platform	is	convenient	as	it	
permits	Phenix	to	be	installed	on	a	variety	of	
Linux	platforms.	

In	 total	 there	 are	 six	 different	 executables	
three	of	which	will	run	both	on	WSL	as	well	as	
native	 Linux.	 In	 the	 subsequent	 text	
executables	produced	by	the	Visual	Studio	or	
the	 MinGW	 compilers	 will	 be	 referred	 to	 as	
Windows	 executables	 or	 win32	 executables.	
The	 Intel,	 the	 Gnu	 5.4.0	 and	 the	 Gnu	 4.4.7	

5

executables	 tested	 on	 native	 Linux	 will	 be	
tagged	with	"native".	If	they	are	tested	on	WSL	
they	will	be	tagged	with	"WSL".	

Hardware	
The	PC	used	for	the	test	is	an	8	core	Intel	Xeon	
CPU	E5-1660	v3	@	3.0GHz.	Hyperthreading	is	
enabled	 meaning	 that	 the	 operating	 systems	
see	it	as	having	16	logical	cores.	The	available	
memory	 is	 32	 Gb	 with	 L1,	 L2	 and	 L3	 cache	
memory	 of	 512Kb,	 2Mb	 and	 20Mb	
respectively.	

To	benchmark	on	Windows	10	or	on	WSL	the	
PC	was	booted	with	the	installed	Windows	10.	
To	 benchmark	 on	 native	 Ubuntu	 16	 it	 was	
booted	 with	 an	 Ubuntu	 16.04.3	 ISO	 image	
from	an	external	USB	device.	This	ensured	the	
hardware	was	the	same	during	all	tests.		

Patching	the	PC	for	the	meltdown	bug	entails	
doing	 a	 BIOS	 update,	 a	 Windows	 update	 as	
well	 as	 updating	 the	 kernel	 of	 an	 existing	

	

	 27	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

6

Ubuntu	16.04.3	 installation	on	a	different	PC.	
The	 Linux	 LiveKit	 software	 available	 from	
https://www.linux-live.org/	was	then	used	to	
deploy	 this	 patched	 Ubuntu	 version	 as	 a	
bootable	 image	 to	 an	 external	 USB	 device.	
This	 USB	 device	 could	 then	 be	 used	 for	
booting	 the	 PC	 into	 the	 patched	 version	 of	
Ubuntu	16.04.3.	

Software	
The	 software	 used	 for	 the	 tests	 is	 written	 in	
C++.	The	times	were	recorded	with	the	Linux	
"time"	 command.	 The	 CPU	usage	 is	 recorded	
with	 the	 Linux	 "top"	 command	 or	 on	
Windows	 with	 a	 custom	 written	 C#	 script	
using	 Windows	 Management	 Information	
templates	 obtained	 from	
https://www.microsoft.com/en-
us/download/details.aspx?id=8572.	 We	 are	
interested	in	how	execution	speeds	scale	with	
the	 number	 of	 threads.	 The	 threading	
technology	 tested	 here	 is	OpenMP.	 Given	 the	
hardware	 exposes	 16	 logical	 cores	 the	
maximum	number	of	OpenMP	 threads	 tested	
for	is	16.	

When	a	program	run	 in	serial	mode,	 i.e.	only	
uses	 one	 CPU,	 the	 usage	 is	 100%.	But	 if	 it	 is	
allowed	 16	 OpenMP	 threads	 a	 CPU	 usage	 of	
up	to	1600%	may	occur	whenever	an	OpenMP	
parallelized	loop	is	executed.	In	all	the	figures	
depicting	 execution	 times	 against	 number	 of	
OpenMP	 threads	 the	 axes	 have	 been	 set	 to	
logarithmic	 scale	 as	 a	 way	 of	 verifying	 the	
scalability	of	parallelization.	

Benchmark	Tests	
The	 following	 sections	 demonstrate	 the	
differences	 in	 execution	 time	 achieved	 with	
executables	 produced	 with	 the	 different	
compilers	and	on	different	platforms	as	listed	

7

above.	 Each	 test	 program	 has	 been	 executed	
on	 the	 above	 platforms	 and	 execution	 times	
are	 presented	 as	 graphs	 and	 tables.	 The	
wobbles	 in	some	of	the	graphs	are	due	to	the	
PC	occasional	executing	other	uninterruptable	
tasks	such	as	virus	scanning.	

The	π-program	
We	tested	a	small	program	that	calculates	the	
natural	 number	 π	 through	 looping	 over	 a	
slowly	 converging	 Fourier	 series	 expansion	
that	was	made	even	slower	by	redundant	use	
of	 exp(),	 cos()	 and	 sqrt()	 operations.	 It	 can	
take	 advantage	 of	 OpenMP	 parallelization	 as	
illustrated	below	in	figure	11	in	the	appendix.	

Benchmarks	of	the	π-program	on	un-patched	
platforms	
As	is	seen	in	figure	1	the	program	scales	well	
with	 the	 number	 of	 OpenMP	 threads	 being	
used;	 data	 points	 for	 each	 compiler	 follow	
almost	 straight	 lines	 sloping	 down	 albeit	 not	
quite	achieving	half	the	execution	time	as	the	
number	of	threads	doubles.	

It	is	apparent	that	the	execution	times	can	be	
categorised	into	three	groups:		

• Intel	executable		
• Gnu5.4.0,	MinGW5.3.0	and	VS	executables,		
• Gnu4.4.7	executable	

As	seen	 in	table	2	the	Intel	executable	clearly	
outperforms	 all	 other	 executables.	 This	 is	
whether	or	not	the	executable	is	run	on	native	
Linux	 or	 on	 WSL.	 The	 speed	 of	 executables	
built	 with	 MinGW5.3.0,	 VS2015,	 VS2008,	
Gnu5.4.0	 WSL	 or	 Gnu5.4.0	 native	 Linux	 are	
roughly	 the	same,	 about	 twice	as	 slow	as	 the	
Intel	 executable.	 The	 speed	 of	 an	 executable	
built	 with	 Gnu4.4.7	 running	 either	 on	 native	
Linux	 or	 on	 WSL	 is	 between	 three	 or	 five	
times	slower	than	the	Intel	executable.	

	

	 28	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

0.6	

1.2	

2.4	

4.8	

9.6	

19.2	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

Figure	1:	Graphs	of	execution	times	in	seconds	of	the	π	calculation	test	job	as	a	function	of	OpenMP	threads	for	Phaser	
built	with	different	compilers	and	running	on	different	un-patched	platforms.	

Table	2:	Execution	times	in	seconds	of	the	π	calculation	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	with	
different	compilers	and	running	on	different	un-patched	platforms.	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 4.905	 9.718	 25.956	 9.713	 9.727	 9.753	 5.001	 9.700	 25.787	

2	 3.457	 6.501	 14.627	 6.065	 6.196	 6.195	 2.937	 5.673	 14.821	

3	 2.603	 5.366	 10.183	 5.316	 4.981	 5.073	 2.124	 4.094	 10.637	

4	 1.835	 4.108	 8.036	 4.193	 4.247	 4.030	 1.516	 3.166	 8.077	

5	 1.807	 3.314	 6.582	 3.430	 3.334	 3.551	 1.409	 2.582	 6.672	

6	 1.600	 3.017	 5.479	 3.290	 2.994	 3.154	 1.165	 2.216	 5.593	

7	 1.426	 2.498	 4.833	 2.635	 2.745	 2.583	 1.021	 1.924	 4.727	

8	 1.190	 2.401	 4.165	 2.432	 2.604	 2.459	 0.884	 1.632	 4.207	

9	 1.263	 2.176	 3.726	 2.292	 2.265	 2.194	 1.039	 1.557	 3.799	

10	 0.995	 1.941	 3.426	 2.074	 2.092	 1.932	 0.938	 1.761	 3.376	

11	 0.972	 1.914	 3.148	 1.808	 1.784	 1.979	 0.876	 1.711	 3.121	

12	 0.839	 1.673	 2.931	 1.902	 1.827	 1.803	 0.865	 1.469	 2.831	

13	 0.825	 1.691	 2.743	 1.809	 1.658	 1.709	 0.796	 1.520	 2.599	

14	 0.858	 1.627	 2.505	 1.622	 1.509	 1.735	 0.796	 1.402	 2.452	

15	 0.775	 1.450	 2.386	 1.513	 1.516	 1.624	 0.778	 1.411	 2.360	

16	 0.770	 1.479	 2.253	 1.575	 1.547	 1.532	 0.708	 1.413	 2.210	

	

	

	 29	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

8

Benchmarks	of	the	π-program	on	patched	
platforms	
Figure	 2	 and	 table	 3	 are	 the	 execution	 times	
for	the	same	calculations	as	above	but	for	the	
platforms	patched	for	the	Meltdown	bug.	

It	 is	 seen	 that	 the	 benchmark	 times	 on	 the	
patched	platforms	are	roughly	the	same	for	all	
the	 Linux	 executables	 regardless	 of	 whether	
they	 are	 running	 on	 native	 Ubuntu	 or	 WSL.	
But	 all	 the	 Windows	 executables	 have	
increased	 their	 run	 time	with	 up	 to	 25%	 for	
single	 threaded	use	(VS2015:	12.223	seconds	
on	 the	 patched	 platform	 compared	 to	 9.727	
on	 the	 un-patched	 platform).	 On	 the	 other	
hand	this	discrepancy	becomes	smaller	when	
the	number	of	threads	are	increased.	

Phaser		
Phaser	is	a	crystallographic	software	program	
making	 extensive	 use	 of	 the	 C++	 Standard	
Template	 Library	 (STL)	 for	 manipulating	

9

dynamically	 allocated	 data	 objects	 that	 may	
often	 exceed	 hundreds	 of	 megabytes	 of	
memory.	 It	 also	 can	 take	 advantage	 of	
OpenMP	parallelization.	Much	of	the	program	
runs	sequentially	however,	as	many	functions	
cannot	easily	be	parallelized.	Given	particular	
input	 data	 for	 a	 Phaser	 calculation	 which	
ultimately	determines	the	size	of	dynamically	
allocated	 data	 objects	 for	 the	 calculation	
OpenMP	 parallelized	 loops	 may	 or	 may	 not	
significantly	reduce	the	overall	runtime	of	the	
calculation.	Source	details	given	 in	"Details	of	
Phaser	source	versions"	in	the	appendix.	

The	 tests	 calculations	 discussed	 below	 were	
chosen	 with	 the	 criteria	 to	 be	 single	
component	 searches	with	 clear	unambiguous	
MR	 solutions	 to	 run	 for	 more	 than	 one	 but	
less	 than	20	minutes.	As	with	 the	π	 program	
Phaser	was	compiled	for	maximum	speed	and	
with	 OpenMP	 for	 all	 compilers	 and	 as	 static	
executables,	 except	 for	 the	 Gnu	 4.4.7	 build	

0.6	

1.2	

2.4	

4.8	

9.6	

19.2	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

Figure	2:	Graphs	of	execution	times	in	seconds	of	the	π	calculation	test	job	as	a	function	of	OpenMP	threads	for	Phaser	
built	with	different	compilers	and	running	on	different	un-patched	platforms.	

	

	 30	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

Table	3:	Execution	times	in	seconds	of	the	π	calculation	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	with	
different	compilers	and	running	on	different	patched	platforms.	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 5.093	 10.062	 26.355	 11.719	 12.223	 13.973	 5.034	 9.697	 26.016	

2	 3.253	 6.811	 14.904	 7.954	 7.604	 8.164	 2.936	 5.774	 15.122	

3	 2.794	 5.198	 10.379	 5.266	 5.545	 6.070	 2.059	 4.076	 10.622	

4	 2.171	 4.528	 8.066	 4.625	 4.595	 4.634	 1.675	 3.039	 8.220	

5	 1.984	 3.651	 6.625	 3.656	 3.890	 4.134	 1.364	 2.561	 6.549	

6	 1.432	 3.068	 5.524	 3.125	 3.290	 3.153	 1.557	 2.204	 5.521	

7	 1.394	 2.737	 4.840	 2.953	 2.728	 2.972	 1.653	 2.298	 4.872	

8	 1.355	 2.461	 4.308	 2.625	 2.449	 2.656	 1.413	 2.745	 4.319	

9	 1.332	 2.507	 3.774	 2.172	 2.152	 2.389	 1.280	 2.140	 3.814	

10	 1.139	 2.263	 3.521	 2.016	 2.081	 2.292	 1.006	 1.908	 3.481	

11	 1.239	 1.883	 3.191	 2.078	 2.136	 1.976	 1.095	 2.160	 3.200	

12	 1.017	 1.822	 3.011	 1.813	 2.036	 1.988	 0.908	 2.235	 2.832	

13	 0.777	 1.836	 2.818	 1.781	 1.931	 1.835	 0.869	 2.012	 2.663	

14	 0.882	 1.730	 2.576	 1.703	 1.638	 1.710	 0.837	 1.581	 2.540	

15	 0.953	 1.619	 2.415	 1.953	 1.620	 1.791	 0.793	 1.619	 2.420	

16	 0.854	 1.449	 2.499	 1.672	 1.633	 1.801	 0.756	 1.484	 2.192	

	

10

where	 we	 used	 a	 Phenix	 installation	 of	 the	
Phenix-1.13-rc1-2965	 version	 built	 on	
Centos6.	

MR_AUTO	on	PDB	entry	1ioM	
This	 test	 consists	 of	 a	 data	 set	 with	 86550	
reflections.	 The	 keyword	 script	 is	 listed	 in	
figure	 12	 in	 the	appendix.	 From	 figure	3	 and	
the	 corresponding	 data	 in	 Table	 4	 it	 is	
apparent	 that	 for	 all	 executables	 and	
platforms	 there	 is	no	 significant	benefit	 from	
using	 OpenMP	with	more	 than	 about	 five	 or	
six	threads.		

Benchmarks	of	an	MR_AUTO	run	with	Phaser	on	
1ioM	on	un-patched	platforms	
In	this	calculation	the	executables	built	by	the	
Microsoft	 compilers	 are	 the	 fastest	 if	 more	
than	 one	 OpenMP	 thread	 is	 used.	 Figure	 4	

11

shows	 the	 CPU	 usage	 as	 a	 function	 of	 wall	
time	 as	 recorded	 during	 the	 Phaser	
calculation	 with	 16	 OpenMP	 threads	 being	
allowed.	

Considerable	 differences	 between	 the	 CPU	
loads	of	the	executables	can	be	seen.	Although	
the	calculation	with	the	VS2015	executable	 is	
the	fastest	compared	to	the	other	executables	
it	 appears	 to	 spend	 more	 than	 100	 seconds	
within	 the	 first	 OpenMP	 parallelized	 loop	
whereas	 the	 Intel	 and	 the	 Gnu	 executables	
spend	less	than	50	seconds.	On	the	other	hand	
the	 VS2015	 executable	 more	 than	 makes	 up	
for	 that	 sluggishness	 outside	 the	 parallelized	
loop	 since	 it	 finishes	 the	 calculation	 in	 less	
than	500	seconds.	

	

	 31	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

400	

800	

1600	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 767.45	 864.17	 1170.32	 762.39	 641.45	 768.3	 682.07	 793.82	 1091.42	

2	 682.89	 757.74	 1067.72	 643.62	 522.5	 584.24	 600.16	 698.72	 990.89	

3	 641.36	 712.01	 1016.93	 588.2	 475.96	 510.89	 575.03	 658.62	 953.6	

4	 639.05	 704.69	 1012.92	 578.32	 461.35	 484.34	 555.38	 636.97	 936.61	

5	 625.68	 684.83	 986.27	 561.17	 449.6	 468.04	 552.64	 637.17	 936.31	

6	 629.86	 732.58	 1034.38	 558.01	 452.27	 463.77	 546.2	 627.89	 924.4	

7	 615.25	 671.62	 970.86	 620.36	 497.68	 461.36	 547.17	 623.91	 918.35	

8	 681.97	 685.8	 1054.11	 568.42	 463.83	 491.66	 531.66	 618.24	 908.26	

9	 610.35	 709.89	 1006.31	 559.72	 451.6	 450.62	 538.1	 629.13	 931.18	

10	 612.28	 666.84	 966.61	 590.15	 450.07	 454.21	 536.65	 627.29	 909.87	

11	 610.78	 662.82	 963.15	 568.43	 453.98	 455.92	 543.32	 614.5	 918.04	

12	 614.82	 685.35	 982.43	 571.36	 453.14	 458.61	 533.57	 615.77	 906.73	

13	 630.53	 676.28	 987.78	 591.8	 472.84	 471.43	 535.41	 609.63	 905.16	

14	 619.69	 671.5	 967.76	 603.99	 470.91	 470.01	 533.88	 614.14	 903.73	

15	 616.96	 669.77	 973.02	 598.67	 490.95	 469.15	 535.59	 618.11	 923.75	

16	 608.77	 666.39	 960.16	 578.55	 467.45	 459.37	 540.73	 614.55	 908.38	

	

Table	4:	Execution	times	in	seconds	of	the	MR_AUTO	on	1ioM	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	
with	different	compilers	and	running	on	different	un-patched	platforms.	

Figure	3:	Graphs	of	execution	times	in	seconds	of	the	MR_AUTO	on	1ioM	test	job	as	a	function	of	OpenMP	threads	for	
Phaser	built	with	different	compilers	and	running	on	different	un-patched	platforms.		

	

	 32	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

12

Benchmarks	of	an	MR_AUTO	run	with	Phaser	on	
1ioM	on	patched	platforms	
Figure	5	and	table	5	display	the	execution	
times	for	the	same	calculations	but	for	the	
platforms	patched	for	the	Meltdown	bug.	

We	note	that	the	Windows	executables	suffer	
a	 run	 time	 increase	 of	 up	 to	 37%	 (VS2015:	
one	 OpenMP	 thread	 881.37	 seconds	 on	
patched	 platform	 compared	 to	 641.45	
seconds	on	the	un-patched	platform).	For	the	
Linux	executables	there	is	virtually	no	change	
in	 speed	 when	 running	 them	 on	 patched	 or	
un-patched	 Ubuntu	 platforms.	 But	 running	
them	on	WSL	 they	 also	 suffer	a	performance	
hit	of	up	to	25%	increase	in	execution	time.	

Although	 not	 shown	 here,	 the	 graphs	 of	 the	
CPU	usage	as	a	function	of	wall	time	recorded	
during	 the	 Phaser	 calculation	 with	 16	
OpenMP	 threads	 being	 allowed	 are	 very	

Figure	4:	CPU	usage	graphs	for	four	selected	executables	running	on	un-patched	platforms	with	16	OpenMP	threads	
for	the	MR_AUTO	on	1ioM	test	job.	

13

similar	 to	 the	 graphs	 of	 executables	 running	
on	un-patched	platforms	in	figure	4.	

MR_AUTO	on	1HBZ	
This	 test	 consists	 of	 a	 data	 set	 with	 95355	
reflections.	 The	 keyword	 script	 is	 listed	 in	
figure	 13	 in	 the	 appendix.	 In	 figure	 6	 it	 is	
apparent	 that	 for	 all	 executables	 and	
platforms	 there	 is	no	 significant	benefit	 from	
using	 OpenMP	 with	 more	 than	 about	 five	 or	
six	 threads.	 In	 fact	 on	 the	WSL	 platform	 and	
for	 the	 win32	 executables	 a	 slight	 overhead	
occurs	if	more	than	about	8	threads	are	used.	
This	 is	 not	 so	 for	 the	 Intel	 and	 Gnu	
executables	running	on	native	Ubuntu.	

Benchmarks	of	an	MR_AUTO	run	with	Phaser	on	
1HBZ	on	un-patched	platforms	
For	 this	 test	 the	 Intel	 executable	 on	 native	
Ubuntu	has	the	 fastest	execution	time	closely	
followed	by	the	Gnu5.4.0	executable	on	native	

	 	

	 	
	

	

	 33	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

400	

800	

1600	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 893.92	 973.13	 1274.63	 991.73	 881.37	 999.68	 674.85	 785.34	 1086.48	

2	 789.47	 852.26	 1167.63	 785.51	 658.87	 755.02	 595.36	 692.44	 985.95	

3	 739.27	 834.61	 1161.77	 744.93	 616.52	 701.71	 568.54	 661.14	 953.29	

4	 722.31	 819.72	 1135.5	 729.48	 614.98	 649.24	 554.11	 636.93	 933.04	

5	 729.94	 815.17	 1120.59	 745.11	 612.9	 636.86	 547.61	 626.89	 922.95	

6	 730.49	 784.57	 1106.87	 720.79	 664.67	 629.89	 540.58	 622.05	 915.99	

7	 739.17	 766.55	 1093.13	 697.73	 618.86	 604.46	 537.15	 617.16	 913.09	

8	 750.7	 782.09	 1090.04	 742.59	 618.31	 619.45	 537.67	 612.31	 907.21	

9	 713.89	 803.67	 1119.75	 725.72	 590.35	 645.63	 539.16	 617.37	 910.51	

10	 734.34	 817.78	 1209.7	 730.37	 592.19	 619.68	 534.82	 618.25	 907.56	

11	 752.3	 863.43	 1149.69	 720.76	 658.54	 615.76	 534.92	 613.11	 906.36	

12	 749.82	 783.43	 1105.23	 795.82	 645.31	 597.56	 535.74	 608.59	 906.52	

13	 766.81	 781.07	 1109.49	 750.69	 626.7	 624.14	 535.36	 608.6	 904.57	

14	 739.92	 807.06	 1117.08	 747.56	 611.49	 672.13	 533.23	 610.11	 903.43	

15	 691.24	 813.66	 1130.17	 745.79	 614.25	 637.13	 538.02	 608.51	 903.62	

16	 737.22	 827.17	 1133.72	 757.98	 617.17	 655.36	 539.52	 610.9	 902.94	

	

Figure	5:	Graphs	of	execution	times	in	seconds	of	the	MR_AUTO	on	1ioM	test	job	as	a	function	of	OpenMP	threads	for	
Phaser	built	with	different	compilers	and	running	on	different	patched	platforms.	

Table	5:	Execution	times	in	seconds	of	the	MR_AUTO	on	1ioM	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	
with	different	compilers	and	running	on	different	patched	platforms.	

	

	 34	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

14

Ubuntu	 as	 seen	 in	 table	6.	 Among	 the	win32	
executables	 it	 is	 interesting	 to	 note	 the	
ranking	 with	 the	 MingGW5.3.0	 executable	
faster	than	the	VS2008	executable	that	in	turn	
is	faster	than	the	VS2015	executable.	Using	16	
OpenMP	threads	the	Gnu4.4.7	executable	runs	
almost	 twice	 as	 slowly	 as	 the	 Gnu	 5.4.0	
executable.	

Benchmarks	of	an	MR_AUTO	run	with	Phaser	on	
1HBZ	on	patched	platforms	
For	 this	 test	 calculation	 the	 execution	 times	
on	 the	 patched	 platforms	 differ	 significantly	
from	the	un-patched	runs.	In	figure	7	the	most	
immediate	 observation	 is	 the	 significant	
overhead	when	running	Linux	executables	on	
the	WSL	platform	with	more	 than	4	OpenMP	
threads.	All	three	executables	run	slower	with	
16	 threads	 than	 with	 just	 one	 thread.	 The	
execution	 times	 of	 the	Windows	 executables	
plateau	for	more	than	five	OpenMP	threads.	

100	

200	

400	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

Figure	6:	Graphs	of	execution	times	in	seconds	of	the	MR_AUTO	on	1HBZ	test	job	as	a	function	of	OpenMP	threads	for	
Phaser	built	with	different	compilers	and	running	on	different	un-patched	platforms.	

15

The	 Linux	 executables	 running	 on	 native	
Ubuntu	 are	 practically	 unaffected	 by	 the	
patches	for	the	Meltdown	bug	as	seen	in	table	
7.	 The	 increase	 in	 execution	 time	 is	 mostly	
under	 one	 percent	 regardless	 of	 number	 of	
OpenMP	 threads.	 This	 is	 contrary	 to	 the	
Windows	 executables	 where	 the	 fastest	
Windows	executable,	MinGW	5.40,	suffer	from	
an	increase	in	execution	time	of	between	14%	
and	24%.	

MR_FRF	on	vz170x37_P1	
This	 test	 consists	 of	 a	 data	 set	 with	 156982	
reflections.	 The	 keyword	 script	 is	 listed	 in	
figure	 14	 in	 the	 appendix.	 The	 fast	 rotation	
mode	 in	 Phaser	predominantly	exercises	one	
of	 the	 OpenMP	 parallelized	 functions	 within	
Phaser.	 Avoiding	 serial	 single	 processing	
calculations	 should	 better	 inform	 us	 on	 how	
OpenMP	 execution	 times	 scales	 with	 the	
number	of	threads	for	Phaser.	

	

	 35	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

Table	6:	Execution	times	in	seconds	of	the	MR_AUTO	on	1HBZ	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	
with	different	compilers	and	running	on	different	un-patched	platforms.	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 156.98	 164.75	 257.41	 178.71	 237.67	 217.77	 145.46	 158.94	 243.62	

2	 134.08	 139.98	 232.08	 153.38	 218.72	 182.29	 122.67	 126.99	 221.18	

3	 127.54	 131.58	 224.28	 142.04	 203.37	 170.19	 111.23	 118.13	 209.96	

4	 124.12	 128.69	 221.31	 136.86	 200.03	 164.89	 107.42	 113.37	 206.5	

5	 123.12	 127.66	 218.07	 135.25	 197.49	 160.01	 105.1	 108.6	 199.78	

6	 123.74	 127.67	 218.9	 133.68	 197.33	 157.79	 101.89	 107.44	 196.34	

7	 124.36	 127.97	 220.54	 132.63	 195.37	 156.48	 101.78	 107.04	 199.13	

8	 125.24	 127.94	 219.43	 132.62	 194.46	 156.08	 102.21	 106.67	 199.73	

9	 126.19	 129.6	 220.83	 134.88	 196.74	 155.78	 101.82	 105.85	 196.63	

10	 126.91	 129.96	 221.56	 133.34	 196.4	 155.43	 101.37	 105.48	 196.62	

11	 127.33	 130.79	 222.93	 134.06	 202.91	 155.13	 100.87	 105.82	 196.37	

12	 128.99	 131.72	 224.27	 134.93	 196.7	 156.25	 101.89	 104.79	 194.69	

13	 131.34	 133.45	 225.74	 137.41	 204.55	 157.24	 100.18	 104.41	 194.46	

14	 132.32	 134.85	 227.14	 137.13	 206.37	 157.62	 100.54	 104.72	 195.61	

15	 133.43	 138.22	 229.41	 137.76	 207.24	 159.22	 101.09	 104.35	 194.52	

16	 137.42	 139.98	 234.64	 139.13	 202.23	 160.97	 102.32	 105.87	 194.91	

	

100	

200	

400	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

Figure	7:	Graphs	of	execution	times	in	seconds	of	the	MR_AUTO	on	1HBZ	test	job	as	a	function	of	OpenMP	threads	for	
Phaser	built	with	different	compilers	and	running	on	different	patched	platforms.	

	

	 36	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 211.59	 191.31	 303.5	 204.16	 270.8	 253.33	 147.42	 150.66	 244.07	

2	 169.61	 164.57	 265.69	 177.07	 246.75	 221.53	 120.69	 126.64	 217.33	

3	 155.69	 162.08	 257.39	 166.1	 240.43	 207.91	 114.01	 117.23	 208.7	

4	 155.37	 160.7	 257.72	 159.3	 245.84	 204.51	 108.31	 111.49	 203.34	

5	 159.07	 161.33	 257.42	 157.47	 246.5	 201.54	 103.7	 109.17	 199.64	

6	 163.84	 165.33	 261.16	 157.36	 249.53	 189.85	 101.52	 107.46	 198.32	

7	 167.24	 168.35	 264.24	 160.78	 250.09	 188.62	 102.46	 105.61	 197.16	

8	 167.56	 173.61	 269.24	 159	 244.59	 186.75	 100.42	 110.5	 197.1	

9	 172.65	 176.41	 272.42	 161.72	 233.81	 190.61	 103.86	 106.41	 203.03	

10	 177.39	 180.21	 277.77	 164.59	 232.34	 189.65	 103.23	 105.13	 196.76	

11	 180.76	 188.64	 281.61	 164.92	 236.27	 190	 102.79	 106.21	 196.18	

12	 189.04	 202.94	 286.16	 166.06	 237.27	 189.86	 102.12	 109.25	 197.29	

13	 191.18	 211.81	 293.87	 167.76	 240.83	 193.32	 105.48	 110.33	 196.44	

14	 196.52	 216.92	 307.18	 170.94	 237.9	 198.83	 105.04	 104.68	 195.47	

15	 200.3	 212.59	 321.86	 181	 244.4	 195.66	 102.25	 105.16	 195.47	

16	 225.8	 227.12	 361.56	 173.2	 248.1	 196.84	 102.04	 105.15	 195.97	

	

Table	7:	Execution	times	in	seconds	of	the	MR_AUTO	on	1HBZ	test	job	as	a	function	of	OpenMP	threads	for	Phaser	built	
with	different	compilers	and	running	on	different	patched	platforms.	

16

Benchmarks	of	an	MR_FRF	run	with	Phaser	on	
vz170x37_P1	on	un-patched	platforms	
Figure	8	shows	the	Intel	executable	on	native	
Linux	being	the	fastest	closely	followed	by	the	
Gnu5.4.0	executable	on	native	Linux.	With	13	
OpenMP	threads	it	executes	the	calculation	in	
29.81	 seconds	 closely	 followed	 by	 the	 speed	
of	 the	 Gnu5.4.0	 executable	 also	 on	 native	
Linux.	 This	 is	 about	 three	 times	 faster	 than	
the	builds	made	with	the	Microsoft	compilers.	
For	 a	 single	 threaded	 calculation	 the	 speed	
differences	 become	 less	 dramatic	 with	 the	
Intel	or	Gnu5.4.0	executable	only	being	about	
1.5	times	 faster	 than	VS2015	executable.	The	
slowest	 executable	 for	 this	 calculation	 is	 the	
VS2008	 executable	 which	 only	 after	 using	
more	 than	 8	 OpenMP	 threads	 begin	 to	 catch	
up	 where	 the	 speed	 of	 other	 executables	
reach	a	plateau.		

The	 CPU	 usage	 graphs	 on	 figure	 9	 of	 the	
executables	with	16	OpenMP	threads	indicate	

17

a	 peculiar	 behavior.	 The	 Intel	 executable	 on	
native	Ubuntu	never	quite	attains	full	usage	of	
the	 CPU	 but	 nevertheless	 finishes	 in	 31	
seconds.	 Both	 the	 Windows	 executables	
(MinGW	5.3.0	and	VS2015)	attain	the	full	CPU	
usage	of	1600%	but	apparently	still	run	more	
than	 twice	as	 slow	as	 the	 Intel	executable	on	
native	 Ubuntu.	 On	 WSL	 however	 the	 Intel	
executable	again	never	reaches	1600%	usage	
but	 settles	 for	 about	 500%	 and	 finishes	 the	
calculation	 in	 a	 similar	 time	 as	 the	
MinGW5.3.0	and	the	VS2015	executable.	This	
points	 to	 inefficiencies	 in	 the	 WSL	 platform	
compared	to	native	Linux.	

Benchmarks	of	an	MR_FRF	run	with	Phaser	on	
vz170x37_P1	on	patched	platforms	
We	note	in	figure	10	that	the	WSL	platform	is	
clearly	 affected	 for	 this	 calculation;	 the	
execution	 times	 plateau	 already	 above	 two	
OpenMP	threads.		

	

	 37	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

Figure	8:	Graphs	of	execution	times	in	seconds	of	the	MR_FRF	on	vz170x37_P1	test	job	as	a	function	of	OpenMP	threads	
for	Phaser	built	with	different	compilers	and	running	on	different	platforms.	

Table	8:	Execution	times	in	seconds	of	the	MR_FRF	on	vz170x37_P1	test	job	as	a	function	of	OpenMP	threads	for	Phaser	
built	with	different	compilers	and	running	on	different	un-patched	platforms.	

25	

50	

100	

200	

400	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 188.16	 204.36	 233.31	 174.72	 178.51	 392.27	 121.73	 141.6	 171.71	

2	 113.01	 122.72	 153.28	 115.33	 124.69	 226.72	 71.58	 80.41	 110.05	

3	 93.82	 100.68	 131.79	 95.11	 104.5	 174.61	 53.86	 62.08	 89.87	

4	 85.96	 92.64	 122.79	 87.57	 97.37	 147.11	 44.8	 50.12	 79.22	

5	 84.98	 92.76	 122.57	 84.11	 94.08	 132.19	 39.16	 44.24	 73.21	

6	 88.99	 93.78	 125.29	 82.91	 91.24	 123.7	 35.72	 40.57	 68.77	

7	 94.24	 96.32	 126.62	 83.24	 92.86	 118.29	 33.42	 37.04	 66.02	

8	 95.13	 96.69	 125.75	 83.1	 91.23	 112.55	 31.46	 34.86	 63.88	

9	 92.21	 93.59	 126.25	 80.13	 94.51	 109.2	 31.4	 34.58	 63.62	

10	 91.05	 94.87	 123.93	 80.95	 91.68	 106.73	 30.87	 33.92	 63.12	

11	 89.85	 95.49	 124.14	 82.43	 95.21	 106.74	 30.8	 32.88	 61.83	

12	 90.98	 93.95	 124.13	 81.49	 92.59	 102.92	 30.41	 32.72	 61.36	

13	 90.86	 93.13	 122.79	 82.54	 96.51	 103.04	 29.81	 33.08	 61.05	

14	 90.45	 93.69	 124.16	 84.85	 96.95	 101.63	 30.1	 32.43	 61.23	

15	 89.21	 93.04	 123.1	 85.84	 97.22	 102.04	 30.28	 32.53	 60.76	

16	 89.07	 92.77	 123.49	 85.35	 96.04	 101.82	 31.27	 33.3	 63.83	

	

	

	 38	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	
	

0	
400	
800	
1200	
1600	

0	 20	 40	 60	 80	 100	

%
	c
pu

	

seconds	

MinGW	5.3.0	

0	
400	
800	

1200	
1600	

0	 20	 40	 60	 80	 100	

%
	c
pu

	

seconds	

VC2015	

0	
400	
800	
1200	
1600	

0	 10	 20	 30	 40	

%
	c
pu

	

seconds	

Intel	nafve	

0	
400	
800	

1200	
1600	

0	 20	 40	 60	 80	 100	
%
	c
pu

	
seconds	

Intel	WSL	

Figure	9:	CPU	usage	graphs	of	four	selected	executables	running	on	un-patched	platforms	with	16	OpenMP	threads	for	
the	MR_FRF	on	vz170x37_P1	test	job	

18

From	 table	 9	 it	 is	 noted	 that	 the	 Linux	
executables	 running	 on	 native	 Ubuntu	 suffer	
from	 almost	 no	 performance	 hit	 after	 the	
platform	has	 been	 patched	 for	 the	Meltdown	
bug.	 The	 Intel	 executable	 time	 increases	 at	
most	3.5%	when	run	with	16	threads	and	the	
Gnu	 5.4.0	 executable	with	 at	most	2.2%.	The	
execution	time	of	the	Windows	executables	on	
the	other	hand	increases	dramatically	with	up	
to	 60%	 in	 one	 instance	 for	 the	 VS2015	
executable.	

Although	 not	 shown,	 the	 graphs	 of	 the	
execution	 times	 for	 the	 tests	 on	 the	 patched	
platforms	 are	 quite	 similar	 to	 the	 graphs	 in	
figure	9.	

Discussion	
Drawing	 conclusions	 from	 the	 benchmark	
tests	 is	 greatly	 complicated	 by	 the	

19

unanticipated	 dependence	 on	 the	 type	 of	
calculations	 performed.	 It	 was	 thought	 the	
relative	speed	of	an	executable	built	with	one	
compiler	 would	 remain	 the	 same	 when	
compared	 to	 an	 executable	 built	 with	 a	
different	 compiler	 regardless	 of	 the	 type	 of	
calculations.	 The	 test	 performed	 here	
demonstrates	 that	 this	 is	 not	 true.	
Nevertheless	 there	are	 several	points	 to	note	
from	the	benchmark	tests.		

For	 small	 programs	 like	 the	π-calculator	 the	
Intel	 compiler	 clearly	 comes	 out	 as	 a	
favourite.	 It	 produces	 executables	 that	 are	
three	or	four	times	as	fast	as	executables	built	
by	 the	Gnu4.4.7	 compiler	and	 about	 twice	 as	
fast	 as	 executables	 built	 by	 the	 Gnu5.4.0	
compiler.	 It	 is	 also	 noted	 that	 the	 execution	
speeds	 of	 all	 executables	 scale	well	 with	 the	

	

	 39	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

Figure	10:	Graphs	of	execution	times	in	seconds	of	the	MR_FRF	on	vz170x37_P1	test	job	as	a	function	of	OpenMP	
threads	for	Phaser	built	with	different	compilers	and	running	on	different	patched	platforms.	

Table	9:	Execution	times	in	seconds	of	the	MR_FRF	on	vz170x37_P1	test	job	as	a	function	of	OpenMP	threads	for	Phaser	
built	with	different	compilers	and	running	on	different	patched	platforms.	

25	

50	

100	

200	

400	

1	 2	 4	 8	 16	

se
co
nd

s	

#	OpenMP	threads	

Intel	WSL	 Gnu5.4.0	WSL	 Gnu4.4.7	WSL	
MinGW5.3.0	 VS2015	 VS2008	
Intel	naTve	 Gnu5.4.0	naTve	 Gnu4.4.7	naTve	

OpenMP	
threads	

Intel	WSL	 Gnu5.4.0	
WSL	

Gnu4.4.7	
WSL	

MinGW	
5.3.0	

VS2015	 VS2008	 Intel	
native	

Gnu5.4.0	
native	

Gnu4.4.7	
native	

1	 333.55	 353.84	 425.33	 249.3	 280.3	 453.65	 124.65	 139.72	 172.81	

2	 238.89	 222.97	 258.02	 157.55	 169.03	 297.84	 72.52	 81.11	 108.99	

3	 236.5	 225.86	 258.67	 141.51	 156.8	 234.59	 54.09	 62.17	 91.06	

4	 235.47	 224.92	 259.52	 134.76	 144.65	 207.29	 45.72	 51.09	 82.51	

5	 227.01	 221.5	 263.2	 131.17	 142.61	 182.17	 40.15	 44.38	 74.3	

6	 220.85	 217.42	 268.95	 126.03	 140.5	 171.99	 36.25	 48.28	 72.44	

7	 210.17	 220.66	 261.65	 122.65	 138.13	 166.1	 35.49	 44.25	 75.42	

8	 206.61	 227.72	 253.52	 123.08	 135.68	 161.1	 36.86	 44.38	 75.84	

9	 205.46	 221.28	 241.59	 126.82	 135.59	 153.66	 34.92	 36.4	 75.2	

10	 204.44	 210.27	 242.22	 131.3	 138.08	 151.81	 33.43	 35.68	 65.68	

11	 204.09	 210.38	 241.99	 129.36	 152.7	 153.65	 33.14	 44.53	 65.39	

12	 205.75	 207.29	 240.77	 124.12	 154.97	 160.55	 32.44	 34.02	 76.33	

13	 214.48	 208.53	 243.04	 127.45	 140.51	 160.23	 30.79	 34.14	 63.04	

14	 213.74	 207.91	 246.98	 127.35	 140.71	 146.92	 31.43	 33.99	 62.78	

15	 211.19	 207.01	 254.77	 126.83	 142.67	 145.49	 30.6	 32.94	 61.61	

16	 200.89	 218.85	 251.54	 127.37	 140.77	 145.64	 30.23	 32.57	 61.72	

	

	

	 40	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

20

number	 of	 OpenMP	 threads.	 This	 suggests	
that	 the	 small	 size	 of	 the	 involved	 functions	
doing	 the	 calculations	 corresponds	 to	 an	
equally	 small	 number	 of	 assembler	
instructions	that	easily	fit	into	cache	memory	
on	the	CPU	during	execution.	

For	a	large	program	like	Phaser	the	picture	is	
much	more	mixed;	Phaser	built	with	the	Gnu	
5.4.0	 compiler	 for	 the	 calculations	 presented	
here,	is	almost	as	fast	as	Phaser	built	with	the	
Intel	compiler.	As	 the	Intel	compiler	uses	 the	
same	C++	Standard	Template	Library	as	the	Gnu	
compiler	 we	 speculate	 that	 because	 this	
library	 is	 used	 by	 both	 Phaser	 executables	
that	could	explain	the	lack	of	time	differences.	

Phaser	 built	 with	 the	 Gnu	 4.4.7	 compiler	 is	
generally	the	slowest	in	all	tests	except	for	the	
test	of	MR_FRF	calculations	where	 it	remains	
faster	 or	 on	 par	 with	 Phaser	 executables	 for	
Windows	 regardless	 of	 the	 number	 of	
OpenMP	threads.	

Phaser	 built	 with	 the	 VS2015	 compiler	 is	
generally	faster	than	when	built	with	VS2008,	
often	 more	 so	 when	 using	 just	 one	 OpenMP	
thread.	 The	 exception	 is	 the	 MR_AUTO	 on	
1HBZ	calculation	where	Phaser	built	with	the	
VS2008	 compiler	 happens	 to	 be	 somewhat	
faster	 than	 when	 built	 with	 the	 VS2015	
compiler.	

Back	in	2008	benchmark	tests	using	Phaser	in	
MR_FRF	mode	were	done	on	the	vz170x37_P1	
data	 set	 identical	 to	 the	ones	presented	here.	
Although	 the	 tests	 back	 then	 were	 done	 on	
slower	 hardware	 they	 ran	 faster	 because	 the	
current	 Phaser	 version	 is	 doing	 more	
preliminary	 calculations	 before	 it	 begins	 the	
actual	 MR_FRF	 calculation.	 The	 conclusion	
back	 then	 was	 that	 a	 VS2005	 executable	 on	
Windows	 XP	 was	 faster	 than	 g++	 4.1	

21

executable	on	Fedora	7	when	running	Phaser	
with	 one	 OpenMP	 thread	 (329	 seconds	
against	 431	 seconds).	 In	 light	 of	 our	 current	
results	 and	 assuming	 that	 the	 VS2008	
compiler	produces	executables	with	the	same	
speed	or	better	than	the	VS2005	compiler	this	
suggests	 that	 Gnu	 compilers	 have	 improved	
more	 quickly	 over	 the	 past	 ten	 years	 than	
have	Microsoft	compilers.	

As	 for	 Phaser	 built	 with	 the	 MinGW	 5.4.0	
compiler	 its	 execution	 times	 are	 faster	 than	
when	 built	 with	 the	 Microsoft	 compilers	
except	 for	 the	MR_AUTO	on	1ioM	calculation.	
In	other	words	 it	 is	 a	 competitive	alternative	
to	Microsoft	 compilers	when	building	 for	 the	
Windows	platform.	

Regarding	OpenMP	the	 tests	carried	out	here	
indicates	 that	 OpenMP	 threading	 on	 native	
Linux	scales	better	than	on	Windows	10.	This	
is	likely	to	be	specific	to	the	operating	systems	
rather	 than	 differences	 between	 Windows	
compilers	 and	 Linux	 compilers	 in	 how	 they	
implement	OpenMP	threading.	

Conclusion	
From	 these	 tests	 one	 can	 conclude	 that	 it	 is	
worth	 using	 the	 more	 recent	 Gnu5.4.0	
compiler	 when	 building	 for	 Linux.	 The	
Gnu4.4.7	 compiler	 that	 is	 currently	 used	
produces	 executables	 often	 being	 half	 the	
speed	 of	 executables	 built	 with	 the	 Gnu5.4.0	
compiler	currently	available	in	Ubuntu	16.04.	

The	striking	advantage	in	the	case	of	the	Intel	
compiler	 for	 Linux	 builds	 of	 the	 small	 π-
program	 does	 not	 hold	 for	 Phaser	 and	
presumable	 other	 large	 programs	 which	 use	
the	C++	Standard	Template	Library.	Phaser	run	
with	 about	 the	 same	 speed	 when	 built	 with	
the	Gnu5.4.0	compiler.	

	

	 41	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

22

The	Meltdown	bug	
Until	 the	 arrival	 of	 the	 patches	 for	 the	
meltdown	 bug	 deciding	 between	 platforms	
Linux	and	WSL	the	picture	was	clear.	Running	
calculations	 on	 native	 Linux	 can	 be	 expected	
to	run	faster	if	the	program	is	large	and	to	run	
with	the	same	speed	on	WSL	if	the	program	is	
small.	 Between	 Linux	 executables	 and	win32	
executables	 however	 there	 seemed	 to	 be	 no	
clear	 winner	 in	 terms	 of	 speed.	 Some	
calculations	are	faster	on	Windows	and	others	
are	 faster	 on	 Linux.	 Hence	 other	 priorities	
may	determine	the	choice	of	platform.	

23

However,	 the	 patches	 for	 the	 meltdown	 bug	
changes	 this	 conclusion	 in	 favour	 of	 native	
Linux	where	the	execution	 times	of	Phaser	 is	
practically	 unaffected	 by	 the	 new	patches.	 In	
contrast	 the	Windows	10	platform	is	affected	
far	more	severely.	It	goes	beyond	the	scope	of	
this	article	to	speculate	what	the	exact	source	
of	 these	 inefficiencies	 is.	Moreover,	 it	 can	 be	
expected	 that	 the	 patches	 for	 the	 operating	
systems	 in	 time	will	 improve	 and	 reduce	 the	
apparent	inefficiencies	currently	experienced.	

24

APPENDIX	

Patches	
Verification	that	the	BIOS	and	the	OS	patches	have	been	properly	installed	was	done	with	the	
scripts	 available	 on	 https://github.com/speed47/spectre-meltdown-checker	 for	 Linux	 and	
https://support.microsoft.com/en-gb/help/4073119/protect-against-speculative-execution-
side-channel-vulnerabilities-in	for	Windows.	

π-program	source	
Program	code	is	shown	in	figure	11.	

Details	of	Phaser	source	versions	
We	 used	 Phaser	 available	 from	 https://git.uis.cam.ac.uk/x/cimr-phaser/phaser.git	 (git	 hash:	
731557)	compiled	with	the	CCTBX	available	from	https://github.com/cctbx/cctbx_project	(git	
hash:	cb94e1b	and	1f0b0593)	as	present	on	November	21,	2017.	These	versions	are	present	in	
the	Phenix-1.13-rc1-2965	build	and	the	CCTBX-installer-dev-1230	build	(no	differences	in	C++	
sources	between	revisions	cb94e1b	and	1f0b0593).	

Keyword	Scripts	
In	 the	 keyword	 scripts	 below	 that	were	 run	 from	 a	 Bash	 shell	 $ncpu	 is	 the	 parameter	 that	
specifies	the	number	of	OpenMP	threads	available	throughout	the	execution.	Figures	12–14	are	
mentioned	in	the	main	text.	

	

	

	 42	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

1

//	OpenMPtest.cpp	an	example	of	multithreading	using	OpenMP	
//	Compiler	command	line	for	
//	Linux	g++:	"g++	-fopenmp	-static	-g	-O3	OpenMPtest.cpp	-oOpenMPtest.gnu.X"	
//	Linux	Intel:	"icpc	-qopenmp	-fast	-static	-debug	all	OpenMPtest.cpp	-oOpenMPtest.intel.X"	
//	Windows	Visual	Studio:	"cl	OpenMPtest.cpp	/Ox	/fp:fast	/EHsc	/openmp	/FeOpenMPtest.exe"	
	
#define	_USE_MATH_DEFINES	
#include	<omp.h>	
#include	<cmath>	
#include	<iostream>	
#include	<iomanip>	
	
using	namespace	std;	
	
class	PiCalculator	
{	
		long	lmax;	//	Gaussian	integration	slices		
		long	kmax;	//	terms	in	Pi	series	
		double	gaussint;	
		double	D,	b,	elapsed_time;	
		double	GetSlowPi(long	m);	
public:	
		PiCalculator(int	nthreads);	
		~PiCalculator();	
		void	GaussIntegrate();	
		double	GetPiResult()	{	return	gaussint;	}	
		double	GetElapsedTime()	{	return	elapsed_time;	}	
};	
	
PiCalculator::PiCalculator(int	nthreads)	
{	
		lmax	=	20000;	//	Gaussian	integration	slices		
		kmax	=	30000;	//	terms	in	Pi	series	
		gaussint	=	0.0;	
		D	=	20.0,	b	=	3.0;	
		elapsed_time	=	0.0;	
	
		cout	<<	"This	program	is	the	slow	Pi	calculator,	a	small	OpenMP	test	for	your	system."	<<	endl;	
		const	int	nprocs	=	omp_get_num_procs();	
		if	(nprocs	<	nthreads)	
		{	
				cout	<<	"\nWarning!\nRunning	this	calculation	with	more	threads	than	processors	makes	no	sense.\n"	
						<<	"Unless	you	want	to	stress	test	your	system	don't	use	more	than	"	<<	nprocs	<<	"	threads."	<<	endl;	
				nthreads	=	nprocs;	
		}	
		omp_set_num_threads(nthreads);	
}	
	
PiCalculator::~PiCalculator()	
{	
		cout	<<	"\nThanks	for	using	the	slow	Pi	calculator."	<<	endl;	
}	
	
double	PiCalculator::GetSlowPi(long	m)	
{//	Compute	Pi	=	3*sqrt(3)*Sum_{k=1}(-1)^k/(3k+1)	-	log(2)*sqrt(3)	
	//	hence	converges	fairly	slowly	
		double	pisum	=	0.0;	
		for	(long	k	=	0;	k<(kmax	+	m);	k++)	
		{	
				double	frac,	div	=	3.0*k	+	1.0;	
				if	(k	%	2	==	0)	//	i.e.	k	is	even	
						frac	=	1.0	/	div;	
				else	
						frac	=	-1.0	/	div;	
				pisum	+=	3.0*sqrt(3.0)*frac;	
		}	
		pisum	-=	log(2.0)*sqrt(3.0);	
		return	pisum;	
}	

Figure	11:	Source	code	for	the	π-program	

	

	 43	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	

2

	
	
void	PiCalculator::GaussIntegrate()	
{	
		double	start,	finish;	
		start	=	omp_get_wtime();	
		double	sum	=	0.0;	
		const	double	dx	=	2.0*D	/	lmax;	
#pragma	omp	parallel	
		{	
#pragma	omp	single	
				cout	<<	"Number	of	threads	is:	"	<<	omp_get_num_threads()	<<	endl;	
#pragma	omp	for	reduction(+	:	sum)	//	add	all	openmp	for-loop	results	into	the	variable	gaussint	
				for	(long	m	=	0;	m<	lmax;	m++)	
				{	
						//	integrate	a	Gaussian	multiplied	with	Pi	
						double	x	=	m*dx	-	D;	
						sum	+=	GetSlowPi(m)	
								*1.0	/	sqrt(2.0*b*GetSlowPi(m	+	7))*exp((cos(GetSlowPi(m	+	13))*x*x)	/	(2.0*b))	*	dx;	
				}	
		}	
		//	end	#pragma	omp	parallel	
		finish	=	omp_get_wtime();	
		gaussint	=	sum;	
		elapsed_time	=	(finish	-	start);	
}	
	
int	main()	
{	
		int	nthreads	=	1;	
		cout	<<	"Enter	number	of	OpenMP	threads	to	use	for	this	calculation:	";	
		cin	>>	nthreads;	
		PiCalculator	myPi(nthreads);	
		cout	<<	setprecision(18);	
		myPi.GaussIntegrate();	
		cout	<<	"\rtime=	"	<<	myPi.GetElapsedTime()	<<	"	sec,	gausssum	=	"	<<	myPi.GetPiResult()	<<	endl;	
		return	0;	
}	
	

Figure	11:	Source	code	for	the	π-program	(cont.)	

HKLIN	../1ioM.mtz	
LABIN	F	=	FOBS_X		SIGF	=	SIGFOBS_X	
COMPOSITION	PROTEIN	SEQUENCE	../1ioM_ChainA.seq	NUM	1	
MODE	MR_AUTO	
ENSEMBLE	MR_2R26_A	PDB	../sculpt_2R26_A_singlechain.pdb		IDENTITY	34.218	
SEARCH	ENSEMBLE	MR_2R26_A	NUM	1	
JOBS	$ncpu	

Figure	12:	Keyword	script	for	running	Phaser	with	the	data	set	with	the	PDB	code	1ioM.	The	model	file,	
sculpt_2R26_A_singlechain.pdb,	is	derived	from	chain	A	of	the	structure	with	PDB	code	2R26	and	has	been	trimmed	with	the	
program	Sculptor.	

HKLIN	../1hbz.mtz	
LABIN	F	=	FOBS_X		SIGF	=	SIGFOBS_X	
COMPOSITION	PROTEIN	SEQUENCE	../1HBZ_ChainA.seq	NUM	1	
MODE	MR_AUTO	
ENSEMBLE	MR_1A4E_A	PDB	../sculpt_1A4E_A.pdb		IDENTITY	41.393	
SEARCH	ENSEMBLE	MR_1A4E_A	NUM	1	
JOBS	$ncpu	

Figure	13:	Keyword	script	for	running	Phaser	with	the	data	set	with	the	PDB	code.	The	model	file,	sculpt_1A4E_A.pdb,	is	
derived	from	chain	A	of	the	structure	with	the	PDB	code	1HZB	and	has	been	trimmed	with	the	program	Sculptor.	

	

	 44	

ARTICLEs

Computational	Crystallography	Newsletter	(2018).	9,	25–44	

	
HKLIN	../vz170x37_P1.mtz	
MODE	MR_FRF	
LABIN	F=F_vz	SIGF=SIGF_vz	
ENSEMBLE	octamer	PDBFILE	../octamer.pdb	IDENT	1.0	
COMPOSITION	PROTEIN	MW	18000	NUMBER	32	
SEARCH	ENSEMBLE	octamer	NUM	1	
MACANO	PROTOCOL	OFF	
MACTNCS	PROTOCOL	OFF	
RESOLUTION	HIGH	0.5	
RESOLUTION	AUTO	HIGH	0.5	
JOBS	$ncpu	

Figure	14:	Keyword	script	for	running	Phaser	with	the	VZ170x37_P1	data	set.	This	is	in-house	data	kindly	provided	by	
Andrea	Mattevi.	The	model	file,	octamer.pdb,	consists	of	8	NCS	copies	of	chain	A	of	the	hexameric	structure	with	the	
PDB	code	2W5E	sited	in	the	corners	of	a	twisted	cube.	

