VOLUME FOUR

COMPUTATIONAL
CRYSTALLOGRAPHY
NEWSLETTER

JANUARY MMXIII

Table of Contents

* PHENIX News 1
* Crystallographic meetings 2
* Expert Advice
* Fitting tips #5 - What's with water 2
* FAQ
* I'm seeing a lot of CIF files. Are they all
restraints? 6

¢ Short Communications
* Phenix / MolProbity Hydrogen Parameter

Update 9
* PSI SBKB Technology Portal: A Web Resource
for Structural Biologists 11
* Articles
* cctbx tools for transparent parallel job
execution in Python. I. Foundations 16

* cctbx tools for transparent parallel job
execution in Python. II. Convenience functions
for the impatient. 23

Editor
Nigel W. Moriarty, NWMoriarty@LBL.Gov

PHENIX News

New features

New AutoBuild features

AutoBuild now has a set of parameters for
building from very accurate but very small
parts of a model. You can now use the

keyword
to start rebuilding from fragments of a model.
You might want to use thisif you look for
ideal helices using Phaser and then rebuild

rebuild from fragments=True

the resulting partial model, as in the
Arcimboldo procedure. The special feature of
finding helices is that they can be very
accurately placed in some cases. This really
helps the subsequent rebuilding. If you have
enough computer time, then run it several or
even many times with different values of
i ran seed. Each time you'll get aslightly
different result.

New MR_Rosetta features

You can now give commands for Rosetta in
mr_rosetta, including a command to specify
where disulfide bonds are located (provided
you have a version of Rosetta that can handle
these commands!). Also the output Rosetta
models are now identified by an ID number so
that they have unique names. To avoid
running too many jobs, the default number of
homology models to download is now 1. Also
the default number of NCS copies (if
ncs_copies=Auto) is now the number
leading to solvent content closest to 50%; if
ncs_copies=None then all plausible
values of ncs_copies are still tested.

The Computational Crystallography Newsletter (CCN) is a regularly distributed electronically via email and the PHENIX
website, www.phenix-online.org/newsletter. Feature articles, meeting announcements and reports, information on research or
other items of interest to computational crystallographers or crystallographic software users can be submitted to the editor at
any time for consideration. Submission of text by email or word-processing files using the CCN templates is requested. The CCN
is not a formal publication and the authors retain full copyright on their contributions. The articles reproduced here may be
freely downloaded for personal use, but to reference, copy or quote from it, such permission must be sought directly from the

authors and agreed with them personally.

Computational Crystallography Newsletter (2013). Volume 4, Part 1.

Base-pairing is now implemented in RNA building.

phenix.autobuild will now try to guess
which bases in a model are base-paired, and if
there is no positive sequence match to the
model, the bases that are base-paired will be
chosen to be complementary. You can set the

cutoff for base pairing with the keyword
dist_cut_base.

Morphing

A new feature in phenix.morph model and
phenix.autobuild morphing allows you to
specify that only main-chain and c-beta atoms
are to be used in calculating the shifts for
morphing. The keyword to do this is

"morph_main=True".

Output models

In phenix.autobuild and phenix.autosol
waters are now automatically named with the
chain of the closest macromolecule if you set
sort_hetatms=True. This is for the final
model only. You can also supply a target
position for your model with
map to object=my target.pdb. Then at
the very end of the run, your molecule will be
placed as close to this as possible. The center
of mass of the autobuild model will be
superimposed on the center of mass of
my target.pdb using Space group
symmetry, taking any match closer than 15 A
within 3 unit cells of the original position. The
new file will be overall best mapped.pdb

Crystallographic meetings and

workshops

The West Coast Protein Crystallography
Workshop, Monterey, CA, March 17- 20, 2013
The web site is wcpcw.org and a number of
PHENIX developers will be in attendance.

43rd Mid-Atlantic Macromolecular
Crystallography Meeting, Duke University,
Durham NC, May 30-June 1, 2013

The website is: http://www.mid-atlantic.org/
and information is available from Jeffrey
Headd (jeffrey.headd@duke.edu).

International Conference on Structural
Genomics 2013 "Structural Life Science"
Sapporo, Japan, July 29-August 1, 2013
The contact information is web site:
http://www.c-linkage.co.jp/ICSG2013
Contact: Katsumi Maenaka

email: maenaka@pharm.hokudai.ac.jp

Gordon Research Conference on Diffraction
Methods in Structural Biology: Towards
Integrative Structural Biology, Gordon

Research Seminar, Bates College, Lewiston, ME,
July 26-27, 2014

A seminar series preceding the GRC meeting.

Gordon Research Conference on Diffraction
Methods in Structural Biology: Towards
Integrative Structural Biology, Gordon

Research Conference, Bates College, Lewiston,
ME, July 27-August 1, 2014

A very interesting and important meeting for
protein crystallographers.

Expert advice
Fitting Tip #5 — What’s with water

Jeff Headd and Jane Richardson, Duke
University

In X-ray crystallography maps, small,
disconnected peaks of electron density are
routinely filled with water molecules, either
through automated water-picking or hand
fitting, either of which may champion lower R
factors over chemistry-supported atom
placement. Many of these density regions are
not, in fact, waters, and through -careful
analysis of the local environment of the peak,
a more reasonable model can be built. Local
sterics and electrostatics are often key
indicators of incorrectly fit waters, and can
provide clues as to what a more likely
candidate atom or atoms could be. Here are a
few examples of density peaks that have been
incorrectly fit with a water molecule, and
ways to arrive at a more plausible model.

Alternate conformations:
Density peaks for un-modeled alternate
sidechain conformations are a common map

Computational Crystallography Newsletter (2013). Volume 4, Part 1.

1EB6 Asp 9
H>O clashes

Figure 1

feature that may be erroneously filled with
water molecules. In Fig. 1 (left panel), Asp 9 of
1EB6 is fit as a t70 rotamer. The two nearby
waters are reasonable fits to their respective
density peaks, but both have significant steric
clashes with the hydrophobic C-beta
hydrogen. Rather than two waters, an
alternate conformation for Asp A 9 in an m-20
rotamer fits the two density peaks very well
(right panel), and is sterically viable. Note that
the backbone must be altered slightly to
accommodate the m-20 alternate through a

1EB6 Asp 9
top rotamer fit

“backrub” motion (Davis 2006), as discussed
in Fitting Tip #4 in CCN, July, 2012.

Unidentified ions:

Another common situation where waters are
placed incorrectly is a density peak that is
better explained by an ion. In Fig. 2A, taken
from the SECSG target Pfu-1218608 (Arendall
2005), the depicted water molecule is an
excellent fit to the density peak, but analysis
of the local steric environment reveals
significant steric overlaps with the three

Figure 2

Computational Crystallography Newsletter (2013). Volume 4, Part 1.

1LPL original, 3waters

Figure 3

neighboring carbonyl oxygen atoms. The
negative charge of this local area is an
excellent candidate for a positively charged
ion, however, and excellent packing is
achieved with the placement of a sodium ion
(Fig. 2B; INNW). It’s also important to keep in
mind that if anomalous data were collected,
the presence of an anomalous peak at the
same location is a strong indicator that the
peak is not a water, and a search for a possible
anomalous scatterer should be considered.

Unidentified ligands:

Ligand density is another example of density
that is often erroneously fit with water
molecules. Regions of continuous electron
density that cannot be attributed to the
primary crystallographic molecules are often
filled with one or more water molecules. Such
arrangements may slightly improve R-factors,
but do not make much chemical or steric
sense. For example, Fig. 3 (left panel) shows
three water molecules placed in a tetrahedral-
shaped density peak from PDBID: 1LPL. The
local hydrogen-bonding environment does
not offer much support for this arrangement

1LPL refit, SO4

of water molecules, but an SO4 molecule fits
quite well, and is much more consistent with
the local hydrogen-bonding network (now
redeposited as 1TOV). Careful consideration
of a given crystal’s crystallization conditions
can offer candidate ligands that may fit
unidentified density regions.

Noise peak:

In some cases, waters are fit to density peaks
that are simply noise. Due to errors in data
collection, phasing, Fourier artifacts, and
other sources of error, some small density
peaks are simply just noise. Automated water-
picking methods may place water atoms in
these peaks, but such peaks are often too
small, amorphous, and lack the expected
electrostatic environment to support an
ordered water molecule.

Real water:

Finally, it’s also possible that a water peak is
actually a water molecule! If the water forms
hydrogen bonds and fits sterically in the
region, it's very likely to be a correct ordered
water.

Computational Crystallography Newsletter (2013). Volume 4, Part 1.

Future development:

To supplement the water picking method in
phenix.refine, automatic identification and
building of other structural features (alternate
conformations, ligands, etc.) is an active focus
of Phenix development. Ion placement will be
available in the near future.

References:

Davis IW, Arendall WB III, Richardson]S,
Richardson DC (2006). "The backrub motion: How
protein backbone shrugs when a sidechain
dances” Structure 14:265-274.

Arendall WB III, Tempel W, Richardson]S, Zhou
W, Wang S, Davis IW, Liu Z-], Rose JP, Carson WM,
Luo M, Richardson DC, Wang B-C (2005). "A test of
enhancing model accuracy in high-throughput
crystallography.” Journal of Structural and
Functional Genomics 6:1-11.

Contributors

P. D. Adams, H. M. Berman, G. Bunkodczi,

V. B. Chen, L. N. Deis, N. Echols, M. . Gabanyi,
L. K. Gifford, R.]. Gildea, R. W. Grosse-
Kunstleve,].]. Headd, N. W. Moriarty,

M. H. Prisant, D. C. Richardson,

J. S. Richardson,]. Snoevink, T. C. Terwilliger,
V.Verma, L. L. Videau

FAQ

This issue’s FAQ grow to such an extent that it
merits its own section. See next page.

Computational Crystallography Newsletter (2013). Volume 4, Part 1.

FREQUENTLY ASKED QUESTIONS

I'm seeing a lot of CIF files. Are they all restraints?

Richard]. Gildea3, Nigel W. Moriarty2 and Paul D. Adamsab
aLawrence Berkeley National Laboratory, Berkeley, CA 94720
bDepartment of Bioengineering, University of California at Berkeley, Berkeley, CA 94720

Correspondence email: pdadams@lbl.gov

Introduction

The acronym CIF is used both to refer to the
Crystallographic Information File!, and the
Crystallographic Information Framework. CIF
is designed to be a human and machine-
readable text format consisting of pairs of
data names and data items (with a looping
facility that allows repeated items). The IUCr
maintains a central repository of application-
specific machine-readable CIF dictionaries,
containing a collection of standard data
names along with definitions and permissible
values. The formal specification of the CIF
format and data name dictionaries can be
found at the [IUCr website?. The
macromolecular CIF dictionary (mmCIF)
contains those data names that are necessary
to describe the results of a macromolecular
crystallographic experiment.

As a flexible and extensible format, CIF is used
to record a variety of information in different
contexts. Phenix3 programs are capable of
reading and writing several different types of
CIF files. Here we present a summary of the
various types of CIF file that the typical user of
a macromolecular refinement program may
encounter.

Restraint files

Restraint CIF files contain the minimum
information necessary for a refinement
program to restrain the internal coordinates
of a given monomer to chemically meaningful
values. The CCP4 monomer library* and the
GeoStd> contain a complete description of the
internal chemical structure for the most
common monomers, including ideal target
values for bonds, angles and torsion angles,
and also definitions of planarity and chirality
if required.

Computational Crystallography Newsletter (2013). 4, 6-8

Both libraries also contain other pieces of
useful information including common residue
synonyms and common links such as the
bonds for inter-residue restraints. In
addition, the GeoStd contains the rotamer
information for the common amino acids.

Generation of restraint files in Phenix is
handled by eLBOWS®, which is called by a
number of other programs including
ReadySet! and the ligand pipeline.

Chemical components files

The PDB chemical components dictionary’
describes all monomers and small molecule
components found in PDB entries. Each
chemical component entry is referenced by
the 3-character alphanumeric code assigned
to it by the PDB, and contains detailed
chemical information and idealized
coordinates. Chemical components files can
be used as input to phenix.elbow in order to
generate restraints (in CIF format) for
refinement. A chemical components file may
look superficially similar to a restraints file,
however it lacks the necessary information
on target values for restraints that is needed
by the refinement program.

Coordinate files

Currently, the PDB format®8 is the most widely
used file format for storing the atom site
coordinates of macromolecular structures.
Alternatively, it is possible to record the atom
site coordinates (and much more) in CIF
format files, with both formats accepted for
PDB deposition. The atomic coordinates in
both PDB and CIF files can be obtained from
the PDB database using the command

phenix.fetch pdb 1xxx --all

FREQUENTLY ASKED QUESTIONS I

This will download the following files:

lxxx.pdb (atomic coordinates in PDB format)
lxxx.cif (atomic coordinates in CIF format)
lxxx-sf.cif (reflection data in CIF format)
lxxx.fa (sequence file in FASTA format)

Coordinate CIF files can be identified by the
presence of the atom site loop containing
information about the atom sites, similar to
that stored in the PDB ATOM record: element
type, Cartesian or fractional site coordinates,
atomic B-factor, occupancy, atom name,
residue name, alternate location identifier,
residue sequence number, insertion code,
chain ID, etc. Look for the presence of a
section that looks something like this (the
order and exact data items present may vary
depending on the source of the file):

loop_
_atom_site.group_ PDB
_atom_site.id
_atom_site.label atom_id
atom site.label alt id
_atom_site.label comp_ id
_atom_site.auth_asym id
_atom_site.auth_seq_id
_atom_site.pdbx PDB_ins_code
_atom_site.Cartn_x
_atom_site.Cartn_y
_atom_site.Cartn z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.type_ symbol
_atom site.pdbx_formal_ charge
_atom_site.label asym id
_atom_site.label entity id
_atom_site.label seq id
_atom_site.pdbx PDB model num

Coordinate CIF files typically also contain a
description of the unit cell and
crystallographic symmetry. Frequently, they
also describe experimental details, similar to
those present in the PDB REMARK records,
but presented in a much more computer-
readable format. Coordinate mmCIF files can
now be wused in place of PDB-format
coordinate files in most Phenix programs (e.g.
phenix.refine’, phenix.model vs data'?),
and phenix.refine will output the

coordinates in CIF format given the option
write model cif file=True.

Computational Crystallography Newsletter (2013). 4, 6-8

Reflection data files

Users of reflection data from the PDB will be
familiar with the mmCIF format reflection
files, most probably as an additional step
where they need to first convert the reflection
data to MTZ format, eg. using
phenix.cif_as_mtz, before being able to use the
reflection data with their favorite programs.
For some time, Phenix has supported the
direct use of mmCIF format reflection files in
place of MTZ files in many programs, although
it may still be preferable to use an MTZ file for
normal workflow, as the binary MTZ file
format is inherently faster for file reading,
particularly for large datasets.
phenix.refine will output the reflections in
CIF format given the option
write reflection cif file=True. An
mmCIF format reflection file will contain a
section similar to this:

loop_
_refln.index_h
_refln.index_k
refln.index 1
_refln.F _meas_au
_refln.F_meas_sigma_au
_refln.pdbx FWT
_refln.pdbx PHWT
_refln.pdbx DELFWT
_refln.pdbx DELPHWT
_refln.status

Depending on the source of the file and the
type of reflection data contained, the order
and exact items present may vary, however
the columns containing the miller indices,
_refln.index h, etc., must be present.

Small molecule CIF files

Coordinate and reflection data files obtained
from the Cambridge Structural Database (CSD)
or the Crystallography Open Database (COD)
may look similar to the files described above,
however these files use a slightly different set of
data names based on an older version of the

dictionary definition language (DDL) that
describes the relationships between data
names. Small molecule CIF files are not

currently utilized by any Phenix program.

FREQUENTLY ASKED QUESTIONS I

References
1S.R. Hall, F. H. Allen and I. D. Brown, Acta Cryst. (1991). A47, 655-685

Zhttp://www.iucr.org/resources/cif

3P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols,].]. Headd, L.-W. Hung,
G.]. Kapral, R. W. Grosse-Kunstleve, A.]. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C.
Richardson, J. S. Richardson, T. C. Terwilliger and P. H. Zwart (2010). Acta Cryst. D66, 213-221.

4A. A. Vagin, R. A. Steiner, A. A. Lebedev, L. Potterton, S. McNicholas, F. Long and G. N.
Murshudov, (2004). Acta Cryst. D60, 2184-2195.

Shttp://geostd.sourceforge.net/

6N. W. Moriarty, R. W. Grosse-Kunstleve and P. D. Adams, Acta Cryst. (2009). D65, 1074-1080.
"http:/ /www.wwpdb.org/ccd.html
8http://www.wwpdb.org/documentation/format33/v3.3.html

9P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, |.]. Headd, N. W. Moriarty, M. Mustyakimov, T.
C. Terwilliger, A. Urzhumtsev, P. H. Zwart and P. D. Adams. Acta Cryst. 2012,D68:352-367

10p. V. Afonine, R. W. Grosse-Kunstleve, V. B. Chen,].]. Headd, N. W. Moriarty,]. S. Richardson, D.
C. Richardson, A. Urzhumtsev, P. H. Zwart and P. D. Adams. J. Appl. Cryst. (2010).43, 669-676.

Computational Crystallography Newsletter (2013). 4, 6-8

SHORT COMMUNICATIONS

Phenix / MolProbity Hydrogen Parameter Update

Lindsay N. Deis®, Vishal Verma®, Lizbeth L. Videau®, Michael G. Prisant®, Nigel W. Moriarty, Jeffrey J.
Headd?, Vincent B. Chen?, Paul D. Adams®®, Jack Snoeyink®, Jane S. Richardson®, and David C. Richardson®

®Duke University, Durham, NC
bUniversity of North Carolina, Durham, NC
“Lawrence Berkeley National Laboratory, Berkeley, CA

dBioengineering Department, University of California Berkeley, Berkeley, CA

Correspondence email: lindsay.deis@duke.edu

The new distribution of PHENIX incorporates
major updates in the parameters and procedures
for hydrogen atoms, providing consistency
between phenix.refine and MOLPROBITY and more
correct treatment in each system across the range
of usage needs.

Most distances between bonded atoms were
settled long ago to high accuracy, but, in the case
of hydrogens, the values in common use often
differ by as much as 20%. This is primarily
because X-ray diffraction sees the electron cloud,
rather than the nucleus, meaning that the
hydrogen’s center is systematically displaced
toward the bonded atom from the hydrogen’s
nuclear position by more than 0.1A (Stewart
1965; lijima 1987; Coppens 1997). In addition, a
hydrogen's electron cloud is sometimes shifted by
local non-covalent interactions such as H-bonding
or tight packing; both systematic and local shifts
can be seen in the figure. The current effort
optimizes allowance for the systematic effects, but
does not treat environment-dependent
distortions.

MOLPROBITY and REDUCE have positioned H atoms
at the better-determined nuclear distances (Word
1999), while PHENIX has used the X-ray suitable
electron-cloud distances. This difference in
parameters affects user clashscores. In addition,
we do believe, along with Pauling (1960), that all-
atom contacts would more appropriately be
calculated at van der Waals radii centered on the
hydrogen's electron cloud. MOLPROBITY needs
more subcategories of H atom types, while all
crystallographic software with libraries for each
atom in each monomer type need correction of
the typos and internal inconsistencies endemic to
such systems. The largest change needed for the
PHENIX electron-cloud positions inherited from
SHELX through CCP4 is 0.03A (for 0-H) and for the
MOLPROBITY nuclear positions is 0.04A (for
tetrahedral N-H). However, each system has

Computational Crystallography Newsletter (2013). 4, 8-10

Figure 1: The difference peak for Hel (blue
contours) is both shifted left along the bond to its
parent N atom (the systematic effect) and also
upward toward the line of the H-bond (an
environmental effect). Note the H nuclear position,
illustrated here by a grey stick. Taken from
PDB:1YK4, Trp 37, 0.694 resolution.

changes of up to ~0.17A for cases where it was
applying what we now consider the wrong type of
value.

Packing analysis and validation both depend on
the total system of hydrogen bondlengths, van der
Waals radii, and the 0.4A threshold defined for
clashes. Several factors have convinced us that the
current system in MOLPROBITY is slightly too strict.
We have therefore re-examined the existing
sources for x-H distance values and have
undertaken new computational, database, and
manual analyses to settle on a confirmed, best set
of electron-cloud x-H distances for
implementation in both MOLPROBITY and PHENIX.
This has involved sphere-fitting to electron
densities calculated using quantum mechanics,
examining high-resolution H difference-density
peaks, and analyzing database distributions of
nearest-neighbor atom-atom distances to re-
optimize the associated van der Waals radii. In
addition, we have compiled bondlengths from X-
ray diffraction and neutron-diffraction small-
molecule structures from the literature and from
the Cambridge Structural Database. The various
sources of experimental and theoretical data for x-
H distances unfortunately are consistent within

9

SHORT COMMUNICATIONS I

0.014 only for the nuclear aliphatic C-H case, so
that future research would still be desirable.
However, we judge that the values presented here
are correct within 0.02-0.034, nearly an order of
magnitude better than the previous situation.
Happily, we find that the new parameters produce
clashscores that have a better trend towards zero
for the best structures at mid to high resolutions
and do a slightly better job determining sidechain
NQH flips.

We are currently implementing this change in
both MOLPROBITY and PHENIX so that the two

References

services will add hydrogens identically and in an
appropriately application-specific fashion. The
electron-cloud values will be the default in both
systems due to the predominant use for X-ray
crystallography. However, each will also include
an option to use updated nuclear positions for
neutron-diffraction refinement, for NMR
structures, or by user choice, and MOLPROBITY will
use van der Waals radii tuned for each case when
calculating all-atom contacts.

Coppens P (1997) X-ray Charge Densities and Chemical Bonding, Oxford University Press, NY, ISBN 0-19-

509823-4.

lijima H, Dunbar]B], Marshall GR (1987) Calibration of effective van der Waals atomic contact radii for
proteins and peptides. Proteins: Struct. Funct. Genet. 2: 330-339.

Pauling L (1960) The Nature of the Chemical Bond, 314 ed, Cornell University Press, Ithaca, ISBN 0-8014-

0333-2.

Stewart RF, Davidson ER, Simpson WT (1965) Coherent x-ray scattering for the hydrogen atom in the

hydrogen molecule, J. Chem. Phys. 42: 3175-87.

Word JM, Lovell SC, LaBean TH, et al. (1999) Visualizing and quantifying molecular goodness-of-fit:
Small-probe contact dots with explicit hydrogen atoms, J. Mol. Biol. 285: 1711-33.

Computational Crystallography Newsletter (2013). 4, 8-10

10

SHORT COMMUNICATIONS I

PSI SBKB Technology Portal: A Web Resource for Structural Biologists

Lida K. Gifford®, Margaret J. Gabanyib, Helen M. Bermanb, and Paul D. Adams®
“Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
bDepartment of Chemistry & Chemical Biology, Rutgers — The State University of New Jersey, Piscataway,

NJ 08854.

Correspondence email: LKGifford@LBL.gov

Introduction

The Protein Structure Initiative (PSI) was first
funded in 2000 and remains committed to
facilitating the process of solving three-
dimensional atomic-level protein structures [1].
In 2008, a web-based resource, now the
Structural Biology Knowledgebase (SBKB,
sbkb.org), was established to capture and
disseminate structural data and results from PSI
research [2]. The Knowledgebase has a
modular architecture providing access to
individual websites for experimental data

tracking, protocols, materials, protein
annotations, modeling, technologies, and
publications. It also makes connections to

related data found in GO [3], PDB [4], UniProt
[5], and 100+ other publicly available gene and
protein resources.

The Technology Portal is one module of the
SBKB and is designed to present methods and
technologies catalyzed by the PSI high-
throughput protein production and structure
determination efforts [6]. In addition, it
functions as a repository for tools developed by
the wider scientific community for structural
biologists to take and use in their research. An
overarching goal of the Technology Portal is to
encourage collaboration among scientists, not
only within the PSI, but also between PSI
researchers and the broader biological
community.

This web resource is comprised of 350 tools and
technology summaries representing each step of
the protein structure determination pipeline, the
majority of which have been developed by the
PSI and are in use at PSI Centers. The
Technology Portal home page presents all items
in one easy-to-navigate page. While several
components of the Portal have been described
in-depth elsewhere [6], an overview of the
search functionality and accessible tools will be
presented, with particular emphasis placed on
new features.

Computational Crystallography Newsletter (2013). 4, 11-15

The Technology Portal Website

The Technology Portal can be reached directly
(technology.sbkb.org/portal/) or via the Methods
Hub of the SBKB (sbkb.org/kb/methodshub.html).
In addition, performing a keyword search on the
SBKB can access Technology Portal information.
Once at the Portal homepage, users can access all of
its technology pages and online resources. The
Technology Portal is hosted using Apache HTTP
software [7] and constructed using the Django 1.2
web framework [8], which accesses data from a
SQLite 3 database [9] and presents them as
technology pages. A screen shot of the current
homepage shows all of the content and
functionalities (Figure 1).

Searching the Technology Portal

There are two ways to search technologies from the
Technology Portal homepage: plain text and by
experimental stage (Figure 2a). A text search box
will return a list of technology pages with the most
recently edited pages shown first, prioritizing
technology pages containing the newest
information. Each technology is indexed by step in
the structure determination process, so a more
general search can be performed by choosing one of
the following topics from a drop-down menu:
Target Selection, Reagents, Cloning, Protein
Expression, Purification, Crystallography, NMR,
Electron Microscopy, SAXS, Annotation/Function,
Modeling, or Dissemination Tools. Users can browse
search results, which are presented in an
alphabetical listing of all records tagged for that
particular process (Figure 2b). Technology pages

contain all pertinent information, such as a
description of the technology, figures, and
information regarding publication, whom to

contact, web links, and availability, if applicable
(Figure 2c).

Technology Toolbox

The first items listed in the Technology Toolbox are
the Featured Technology article, Profile, and
Technical Note (Figure 1a). All of these features are

11

SHORT COMMUNICATIONS

% sbkb.or’ Resource Hubs « Current Focus About

iLike K 21 people like this.

Homa Page Welcome to the PSI Tech Portal
Discover the latest technologies and methods used in high-
throughput structural biology efforts. Search - Learn - Get ahead in
your research.

Featured Technology

Featured Technology
Archive

Search the Technology Portal

Resource Profile Search over 300 technology reports by text -or- browse by experimental type.

Profile Archive search by text, e.g. ‘'vector' | (submit) [Annotation/Function

Technical Note

Web-based Resources

Featured Technology

In crystallo and in silico Approaches to Functional

Proteomics

(»)

View profile

Tech Websites

Tech Videos

Tech Forum

PSI:Biology Network

PSI:Biology Resource Profile

PSI:Biology-MR: Keeping the Wheels of Structure
Determination in Motion

Technical Note
Hi5 & Sf9 Media: Standard Operating Procedure for

In-House Production

Web-based Resources

Find useful websites and online
servers that you can use to design,
predict or model results.

Browse the Resources

Technology Websites

Explore the technology websites
that are maintained by PSI:Biology
Centers.

Access the Sites

Tech Videos

Watch videos of new technologies in
action on YouTube.

You (D)

Tech Forum

Ask gquestions and get updates on
the latest technology.

naure
network

Join the Forum

Figure 1

The PSI SBKB Technology Portal homepage. a) Users can access information by keyword or experimental step in
the search area. b) The Technology Toolbox contains three items that are updated on a periodic basis: Featured
Technology, Center or Resource Profile, and Technical Note. In addition, links to web-based resources, Center
technology web pages, Tech Videos, and the Tech Forum can be found in the bottom portion of the Toolbox. There
are two menus on the homepage: the Main menu on the left and the SBKB banner menu at the top of the page.

Computational Crystallography Newsletter (2013). 4, 11-15 12

SHORT COMMUNICATIONS

d

Search over 300 technology reports by text -or- browse by experimental type.

submit

—

search by text, e.g. 'vector

v Select an experimental step __] (GO)

Target Selection

Reagents
E_ e
i Protein Expression

Purification
Crystallography
Featured Tecl ww

Electron Microscopy

In crystallo and in s sAXs tional
Proteomics

Modeling
Dissemination Tools

Search the Technology Portal

PSI | SBKB Technology Porta

Amino acid determinants of substrate selectivity in
(submic) the Trypanasoma brucei sphingolipid synthase family

Home Page

Featured Technology
Center

Featured Technology

Archive Transmembrane Protein Center
Resource Profile

Technology

Profile Archive

Annotation & Function

Web-based Resources Summary

Tech Websites The substrate selectivity of four Trypanosoma brucei sphingolipid synthases is examined

Tech Videos

Description

Resource Hubsa Current Focus About

Annotation & Function:

Home Page

Featured Technology

re Comparison and Alignment

using the Combinatorial Extension (CE) method.
FeaturadTechnology More... | Related articles

Archive

Resource Profile

Profile Archive r-based herbicide toxicity

Technical Note Center for Eukaryotic Structural Genomics
Web-based Resources

Tech Websites

5-fold increases in the intracellular concentrations of all adenine ribonucleotides.
More... | Related articles

Tech Videos

Tech Forum

This website has databases and tools for 3-D protein structure comparison and alignment

ide pool perturbation is a metabolic trigger for AMP

AMP deaminase (AMPD) is essential for plant life, but the underlying mechanisms responsible
for lethality caused by genetic and herbicide-based limitations in catalytic activity are
unknown. Deaminoformycin (DF) is a synthetic modified nucleoside that is taken up by plant
cells and S'-phosphorylated into a potent transition state-type inhibitor of AMPD. Systemic
exposure of Arabidopsis (Arabidopsis thaliana) seedlings to DF results in dose-dependent
(150-450 nm) and time-dependent decreases in plant growth that are accompanied by 2- to

iLech;Forum TbSLS1, an inositol phosphorylceramide (IPC) synthase, and TbSLS4, a bifunctional

phosphory EPC) synthase, were inactivated by
Ala substitutions of a conserved triad of residues His210, His253, and Asp257 thought to form
part of the active site. THSLS4 also catalyzed the reverse reaction, production of ceramide
from sphingomyelin, but none of the Ala substitutions of the catalytic triad in TbSLS4 were
able to do so. Site-directed mutagenesis identified residues proximal to the conserved triad
that were responsible for the discrimination between charge and size of the different head
9roups. For between anionic and zwitterionic
phasphoethanclamine) head groups, doubly mutated V1720/5252F TbSLS1 and
D172V/F2525 TbSLS3 showed recprocal conversion between 1PC and bifunctional SM/EPC
synthases. For _differentiation adgrau , N170A TbSLSL and
A170N/N187D TbSLS4 showed reciprocal conversion between EPC and bifunctional SM/EPC
synthases. These studies provide a mapping of the SLS active site and demonstrate that
differences In catalytic specficity of the T. brucel enzyme famlly are controlled by natural
variations in as few as three residue positions.

PSI:Biology Network

Figure

peey
\ (2.7.8.27))
> <@
(
CM DAG

Publication

Goren MA, Fox BG, Bangs JD. Amino acid determinants of substrate selectivity in the
Trypanosoma brucel sphingolipid synthase family. Biochemistry (2011), 50(41):8853-61
Pubmed:21899277 | Search SBKB Publications portal | PMC Link

Contact

Brian G. Fox (bgfox@biochem.wisc.edu)

PSI:Biology Network inants of

ise family

ivity in the Try

Transmembrane Protein Center

More.... | Related articles.

brucei

The substrate selectivity of four Trypanosoma brucei sphingolipid synthases is examined

Link
http://www.uwmembraneproteins.or

Related articles

divergent protein families for iso-structural and iso-

Last edted:Tue 08 Jan 2013 - 2 weeks, 2 days 200

About Us | Privacy policy | Terms of Use

Figure 2

Example search by experimental step. a) Close-up view of the search box area from the home page with
Annotation/Function highlighted on the drop-down menu. b) The first page of the search results list obtained by
clicking “Go” on the main page. c) A typical technology page containing Title, PSI Center, Summary, Description,
Figure and legend, Publications, Contact Information, a Link, and social networking and bookmarking buttons for

sharing and saving a link to the page.

periodically updated, with the content changing
every one to four months. Featured Technology
highlights technologies and resources of interest
to structural biologists. Recent articles have
covered new advances in functional proteomics
[10], the Membrane Proteins of Known 3D
Structure Database [11], and the Biosync website
[12]. All previous articles are displayed in the
Featured Technology Archive, accessed by the
Main menu (Figure 1b, [13]). The Profile section,
started in June 2012, details the research and
outreach projects performed at different PSI

Computational Crystallography Newsletter (2013). 4, 11-15

Centers. Most recently, the Profile focused on the
PSI:Biology-Materials Repository (PSI:Biology-
MR; [14, 15]), which stores, maintains, and
distributes PSI-created protein expression
plasmids and vectors. This article introduces users
to the types of information that are available on
the PSI:Biology-MR website and offers a glimpse
into the structure, function, and reach of this
valuable resource [16]. A link to the Profile
Archive, currently displaying three previous
Center Profiles, can be found in the Main menu
(Figure 1b, [17]).

13

SHORT COMMUNICATIONS I

The most recent addition to the Technology
Toolbox is the Technical Note. This feature was
established in December 2012 and the inaugural
entry describes the standard operating procedure
for making insect cell media in-house [18],
contributed by James D. Love, PhD, Head of
Technology, New York Structural Genomics
Research Consortium (nysgrc.org). This Note will
change periodically and be used to disseminate
detailed protocols that would be beneficial to a
wide audience of structural biologists.

The bottom portion of the Technology Toolbox
contains links to Web-based Resources, Tech
Websites, Tech Videos, and the Tech Forum. The
Web-Related Resources section contains a list of
over 70 technology pages describing web servers
or web-based tools that can be employed by
structural biologists to design, predict, and model
results (technology.sbkb.org/portal/useful_servers).
Clicking on Tech Websites takes users to a page
listing the technology websites maintained by PSI
Centers. All four of the PSI:Biology High-
Throughput Centers for Protein Structure
Determination, over half of the Centers for
Membrane Protein Structure Determination, and
the Mitochondrial Protein Partnership, a
PSI:Biology Consortium for High-Throughput
Enabled Structural Biology Partnership, maintain
web pages describing the software, tools, and
other technologies they have developed to relieve
bottlenecks in protein structure determination
(technology.sbkb.org/portal/technology links). The
Tech Videos page displays sbkbtech YouTube
channel videos (www.youtube.com/user/sbkbtech).
Currently, there are eight technologies in action
(technology.sbkb.org/portal/video). Tech Forum
is a direct conduit to the Technology Portal Forum
group (network.nature.com/groups/psikb_tech/)
hosted on the Nature Network. This forum
provides a virtual place for scientists to connect
on a professional level and exchange information
about structural biology technology.

Outreach

The Technology Portal maintains a Facebook page
at facebook.com/techportal. Posting of new
content is announced on Facebook, as well as
interesting items from the SBKB [19] and
PSIl:Biology-MR [20] Facebook pages, meeting
announcements, and notifications from sources
such as Nature [21], the Protein Data Bank [4],
and NCBI [22].

Computational Crystallography Newsletter (2013). 4, 11-15

The Technology Portal works closely with two
other PSI:Biology web resources by using link-
outs to connect useful information between sites.
For example, the PSI Publications Portal
(olenka.med.virginia.edu/psi/) contains all
publication information and statistics for the more
than 1800 peer-reviewed articles that have been
published by the PSI over the past 12 years. Users
can find links to article summaries on most
technology pages. In addition, if a publication is
referenced on a technology page, the Publications
Portal entry contains a link to the appropriate
page on the Technology Portal.

Crosslinks have also been established with the
PSI:Biology-Materials Repository (psimr.asu.edu/;
[14, 15]). All technology pages describing a vector
designed and used by PSI Centers contain
availability information and a link to the
PSI:Biology-MR. Reciprocally, on appropriate
vector pages, the PSI:Biology-MR refers users to
the Technology Portal for more information.

Conclusion

The Technology Portal is dedicated to capturing
and highlighting technological advances that are
instrumental to enabling structural biological
research. This is accomplished by collaborating
with PSI Centers and members of the wider
scientific community to gather methods and tools
that have been developed that would be widely
beneficial to scientists. Tech Portal feature articles
and technology pages are updated frequently so
that scientists can take and use the knowledge and
tools provided in their research. We welcome
feedback from the community at psi-tech@Ilbl.gov.

Acknowledgements

The authors would like to thank the Protein
Structure Initiative Pls, researchers, and
Structural Biology Knowledgebase members for
their collaboration and support of the Technology
Portal. We thank Nicholas Sauter for server
maintenance and technical support. The
Technology Portal is a resource center within the
Protein Structure Initiative and is supported by
grant U01GM093324 from the National Institute
of General Medical Sciences. This work was
supported in part by the US Department of Energy
under Contract No. DE-AC02-05CH11231.

14

SHORT COMMUNICATIONS I

References

1. Gabanyi M], et al. (2011) The Structural Biology Knowledgebase: a portal to protein structures,
sequences, functions, and methods. J Struct Funct Genomics 12(2):45-54.

2. Berman HM, et al. (2009) The Protein Structure Initiative Structural Genomics Knowledgebase.
Nucleic Acids Res 37 (Database issue):D365-368.

3. The Gene Ontology Consortium. (2000) Gene Ontology: tool for the unification of biology. Nature
Genet. 25:25-29.

4. Berman HM, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28:235-242.

5. The UniProt Consortium. (2012) Reorganizing the protein space at the Universal Protein Resource
(UniProt). Nucleic Acids Res 40:D71-D75.

6. Gifford LK, Carter LG, Gabanyi MJ, Berman HM, & Adams PD. (2012) The Protein Structure Initiative
Structural Biology Knowledgebase Technology Portal: a structural biology web resource. | Struct
Funct Genomics 13(2):57-62.

7. Apache HTTP Server Project. (2011) Available from: http://httpd.apache.org/

8. Django: A Python Web Framework. (2005) Available from: http://www.djangoproject.com

9. SQLite 3: SQL database engine. (2004) Available from: http://www.sqlite.org/

10. PSI SBKB Technology Portal. (2012) In crystallo and in silico Approaches to Functional Proteomics.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Available from: http://technology.sbkb.org/portal /fall 2012 feat_tech

White, S. (1998) Membrane Proteins of Known 3D Structure Database. Available from:
http://blanco.biomol.uci.edu/mpstruc/

Kuller A, et al. (2002) A biologist's guide to synchrotron facilities: the BioSync web resource. Trends
Biochem Sci 27(4):213-215.

PSI SBKB Technology Portal. (2011) PSI Tech Portal Featured Technology Archive. Available from:
http://technology.sbkb.org/portal/archive

Cormier CY, et al. (2010) Protein Structure Initiative Material Repository: an open shared public
resource of structural genomics plasmids for the biological community. Nucleic Acids Res
38(Database issue):D743-749.

Cormier CY, et al. (2011) PSIl:Biology-materials repository: a biologist's resource for protein
expression plasmids. J Struct Funct Genomics 12(2):55-62.

PSI SBKB Technology Portal. (2012) PSI:Biology-Materials Repository: Keeping the Wheels of
Structure Determination in Motion. Available from:
http://technology.sbkb.org/portal /PSIMR_profile

PSI SBKB Technology Portal. (2012) PSI Tech Portal Profile Archive. Available from:
http://technology.sbkb.org/portal /profile_archive

PSI SBKB Technology Portal. (2012) Hi5 & Sf9 Media: Standard Operating Procedure for In-House
Production. Available from: http://technology.sbkb.org/portal /insect_tech_note

PSI Structural Biology Knowledgebase. (2010) PSI Structural Biology Knowledgebase Facebook
Page. Available from: https://www.facebook.com /psisbkb

PSI:Biology-Materials Repository. (2010) PSl:Biology-Materials Repository (PSI:Biology-MR)
Facebook Page. Available from: https://www.facebook.com/pages/PSIBiology-Materials-
Repository-PSIBiology-MR/108495809177357

Nature Publishing Group. (2007) Nature Facebook Page. Available from:
https://www.facebook.com /nature

National Center for Biotechnology Information. (2010) NCBI - National Center for Biotechnology
Information Facebook Page. Available from: https://www.facebook.com /ncbi.nlm

Computational Crystallography Newsletter (2013). 4, 11-15 15

ARTICLES

cctbx tools for transparent parallel job execution in Python. I. Foundations

Gabor Bunkéczi® and Nathaniel Echols”

“Department of Haematology, University of Cambridge, Cambridge, UK

bl awrence Berkeley National Laboratory, Berkeley, CA

Correspondence email: gh360@cam.ac.uk

Introduction

Parallelization can distribute independent calculations
over multiple processing units and can decrease the
run time of a series of slow calculations. Unfortunately,
parallel code is also more complicated, therefore error-
prone and difficult to maintain. While there are several
reasons for increased complexity, notably the need for
synchronization between parallel processes,
maintenance of parallel-enabled program sections is
also a (perhaps underrated) problem that deserves
attention.

While most languages do not provide direct support for
parallelization and rely on low-level operating system
support, there are successful initiatives for enabling
parallel processing either by compiler technology (e.g.
OpenMP, http://openmp.org) or an external library
component (e.g. Intel Threading Building Blocks,
http://threadingbuldingblocks.org). Similarly, the
Python-specific scheduling module (Bunkéczi &
Echols, 2012) provides high-level constructs for
transparent parallel execution that aim to be minimally
intrusive on code layout. It is available with the
libtbx module of the Computational Crystallography
Toolbox (cctbx, http://cctbx.sourceforge.net; Grosse-
Kunstleve et al., 2002), the open-source component

of the PHENIX project (http://www.phenix-online.org;
Adamsetal, 2010).

Problem setting

For the purposes of this article, parallelization is
defined as multiple simultaneous job execution
managed at Python code level. This includes the Python
standard library = modules threading and
multiprocessing, as well as any module that
supports job execution on batch queue systems (e.g.
libtbx.queuing_system_utils.processing), as
long as they provide a factory function that conforms to
a standard interface defined by threading.Thread
or multiprocessing.Process. Parallelization
technologies that affect code at lower levels (e.g. an

Computational Crystallography Newsletter (2013). 4, 16-22

OpenMP-parallelized function exported to
Python) are excluded from the discussion.

A typical maintenance problem is illustrated
with the (slightly exaggerated) code example
on Figure 1. Apart from not being
aesthetically pleasing, there are several
serious problems with this pattern:

1. It is not feasible to come up with a
(sufficiently) comprehensive list of all
possible parallelization techniques,
especially batch queue managers. New
systems may appear in the future, or
may become non-backwards compatible
after a major release. In this case, the
existing codebase has to be searched
and amended as necessary.

2. There exist almost certainly instances of
severe code duplication among the
branches of the conditional expression.
If the algorithm changes, all branches
need to be updated. Moreover, the
algorithm logic is potentially interleaved
with calculation details and it is more
difficult to follow the program flow.

3. The program will typically contain
several parallel sections and parameters
of parallel execution to be propagated to
all of these. In addition to distributing
knowledge throughout the program
(discussed in 1), this makes it very
difficult or impossible to reuse existing
parts, because parallelization normally
lies outside the computational domain
of a given calculation. This requires the
introduction of numerous thin wrappers
and further code duplication, because
details of parallelization are not
mandated to be wuniversal among
different programs and are therefore
potentially incompatible.

16

ARTICLES I

if num cpus ==
do something

else if parallelisation method = "shared memory":
do something else, potentially using num cpus

else if parallelisation method == "SGE":

do something else, potentially using num cpus

else:
raise ValueError,

Figure 1

"Unknown parallelization method"

Code segment from a hypothetical naively constructed parallel-enabled function.

The scheduling module

The libtbx.queuing system utils.scheduling
module (Bunkéczi & Echols, 2012) helps with
encapsulating execution details within a Manager object

and could provide a solution for some of the
aforementioned problems:
1. The Manager object is independent of the

computation. It is possible to instantiate it at the very
beginning of the application using a standardized user
interface and use it throughout the program. This
allows encapsulation of all details in a user interface
definition and a module-level function that creates a
Manager object from the standard interface. Since
this could be stored at a central location, code changes
are automatically propagated to all applications. This
in turn enables incremental delivery and support for
new queuing systems can be added at any time
without necessary modifications to application code.

2. Since execution mode is encapsulated, there is no need
for code duplication. This also results in a less complex
program flow.

3. The Manager object allows parallel execution of
Python callable objects. There is no other requirement
imposed by the module. However, the Manager object
still needs to be propagated to all parallel enabled
code. In addition, there may be further requirements
imposed by the execution technology (e.g. certain
objects need to be pickleable). These, however, can be
satisfied by external code (e.g. adding pickling
support) and do not require customizations in the
scheduling module.

However, there are some additional tradeoffs to consider:

1. Unlike OpenMP, the code needs to be written using the
module explicitly.

Computational Crystallography Newsletter (2013). 4, 16-22

2. There is a slight overhead (compared
to specialized non-parallel code)
when parallel-enabled code written
using the module is executed on a
single CPU. This overhead roughly
equals to several additional function
calls and array manipulations per
iteration. However, if the parallel
section takes significantly longer than
typical Python array manipulations,
this overhead should be negligible.

On the other hand, the module is
sufficiently flexible so that program
behavior does not need to change. It is
possible to re-structure non-parallel code
so that the version rewritten using the
scheduling module behaves identically
from the user's perspective.

Parallel architecture

The scheduling module supports a
master-slave type pattern. The main
thread (the master) assigns calculations
to workers and these can proceed
independently without blocking the
master. The workers only communicate
with the master and therefore there is no
need for synchronization between them.
Scheduling is performed by the master to
ensure that available computational
resources are fully exploited, but not
overcommitted. = Tests show that
scheduling overhead is negligible and
scaling is only dependent on the fraction
of parallel code.

17

ARTICLES I

The scheduler component is provided by
implementations of the Manager interface.
Calculations that can be delegated to workers take
the form of Python function calls, with a callable
(either function or method) and (positional and
keyword) arguments. These are stored inside the
Manager object and the calculation is started
when a worker becomes idle. Calculation status
queries and access to results are made available
through method calls.

Manager models

The Manager interface is an abstraction for
controlling program behavior from the users'
perspective. It is defined in the scheduling
module and allows multiple implementations with
varying properties so that a good match for the
program's requirements could either be found or
implemented. There are currently three basic
implementations available:

* Manager. This has possibly the most
widespread applicability. It manages not only
the execution of calculations (which is pre-
configured, but allowed to be a mixture of
modes), but also a job queue. It assumes,
however, that executing a calculation does not
block the main thread of control.

* MainthreadManager. This is a dummy
Manager that executes calculations on the
main thread. Execution is delayed so that
output can Kkeep scrolling as calculations
complete. In addition, this has the lowest job
startup overhead equivalent to about a single
function call and is therefore the right choice if
there is only one processing unit available.

* Adapter. This allows sharing of a single
Manager instance in order to provide scalable
computing power to multiple parts of the
same application. It behaves as a Manager
with a variable number of processing units,
since depending on resource utilization of
other components, computational resources
available to a given component can vary.

There are additional classes that may be necessary
for certain tasks and whose implementations are
pending:

* QueueManager. This implements access to a
batch queuing system and delegates queue
management to the same. Only a single

Computational Crystallography Newsletter (2013). 4, 16-22

execution mode is allowed, but the number of
concurrent processes is unlimited.

* PoolManager. Instead of creating a new
thread of control for each calculation, this re-
uses a pre-created pool of workers. If running
through a batch queue system, this could
lower job startup overhead considerably as it
would effectively bypass the job queue. An
efficient implementation could also provide
for automatic resource allocation/de-
allocation according to the load.

Calculation results and error handling

The Manager is unaware of any backwards
communication between the actual workers and
their proxies (ExecutionUnits) held by the
Manager. This responsibility is handled by the
individual ExecutionUnits. After termination
of the wunderlying calculation, the Manager
provides an opportunity for the ExecutionUnit
to "post-process” the results and become ready for
accepting the next calculation. In this time
window it is possible to obtain results from the
worker through a suitable data queue. In case a
data queue becomes stuck (e.g. through an NFS
latency), the Manager temporarily suspends the
ExecutionUnit to avoid stalling the job queue
and then periodically retries. Eventually, after a
preset timeout, the ExecutionUnit is reset and
the calculation is handled as failed.

Signaling error conditions is delayed until the
calculation result is accessed. This is to ensure
that in case an error occurs the internal state of
the Manager is not corrupted, so that processing
can be resumed (in case it is allowed by the nature
of the computation, e.g. a suitable default value
can be substituted for the missing result). The
returned job handle is a type with a polymorphic
__call method that yields the value returned
by the call if the job terminated normally or raises
a RuntimeError exception if failed. The module
currently takes the view that any exception
handling code for exceptions that are expected
should be included within the call. When
executing a call on a batch queue, it is the exit
status of the process that is monitored and an
error is raised if a process terminates with a non-
zero exit status. Since execution occurs
independently, errors that would normally cause
the parent process to terminate if executed on a

18

ARTICLES I

from mymodule import mycalc

identifierl = manager.submit(target = mycalc, args = (1,))
identifier2 = manager.submit(target = mycalc, args = (2,))
fetch result for designated job
handle2 = manager.result for(identifier = identifier2)
try:

result2 = handle2 ()

except RuntimeError, e:
print "Second calculation failed"

fetch result for next job

handlel = manager.results.next ()
try:
resultl = handlel ()

except RuntimeError, e:
print "First calculation failed"

Figure 2

Code example: using methods of a Manager to submit jobs and wait for results. Manager can return
result handles for requested calculations or for the one that finishes next. The call method ofa
result handle returns immediately and only necessary to signal an error condition. mymodule is a
hypothetical module containing the function mycalc. See Bunkdczi & Echols (2012) on how to instantiate

aManager.

separate thread or process (e.g. segmentation
fault) can be handled more gracefully, either by
logging the error and resuming execution, or by
terminating gracefully. A typical error-handling
scenario is shown in Figure 2.

Parallel constructs

Using a Manager object directly allows full
flexibility. This may be necessary if each job is a
different type of calculation or if subsequent jobs
are dependent on previously returned results (e.g.
from molecular replacement, parallel translation
functions for rotation function peaks). The
Manager provides an API similar to that of a
queuing system. When calls are submitted, the
Manager returns a job identifier that can later be
used to check whether the job has finished. The
Manager also provides various methods to access
results of finished calculations. A very simple
example is shown in Figure 2.

Computational Crystallography Newsletter (2013). 4, 16-22

While having full flexibility is sometimes
advantageous, it is not always necessary. In the
majority of cases, parallelization is employed to
execute a loop in parallel (cf. #pragma omp
parallel for). While this can be emulated by
an initial for loop that submits all calculations to
the Manager, and a subsequent for loop that
fetches results for each identifier, this solution
suffers from several drawbacks. First, the number
of loop iterations is normally larger than the

number of available processing units. Input
arguments for all calculations have to be
generated upfront, unnecessarily filling up

memory. Second, there may be a long delay while
calculations are being submitted before the result
for the first calculation is accessed. This can cause
not only user inconvenience, but also
accumulation of results that may also lead to out-
of-memory errors. Third, if the sequence of
calculations is infinite, the program will never
reach the second loop (this may sound rather

19

ARTICLES I

esoteric, but it is in fact a valid technique to use an
infinite sequence and is employed by several
widely used programs in crystallography).

The module provides the
ParallelForIterator class for these
situations. This requires a Manager instance and
an iterable returning a tuple (target, args,
that defines each calculation. The
maps these
calculations onto the Manager in a dynamic
fashion. Since the iterable can be a generator, the
arguments are generated as needed and not
upfront. The delay is also much less, because only
as many calculations are submitted as there are
idle processing units. In addition, processing
infinite sequences is possible with finite memory,
since calculations are submitted and results are
accessed continuously, and at any given time
point there is a finite number of active
calculations.

scheduling

kwargs)
ParallelForIterator

In contrast to what is suggested by its name,
ParallelForIterator is not a Python
iterable. However, an iterable can be constructed
by passing the object to the ordering classes
FinishingOrder and SubmissionOrder.
These control the order in which results are
returned. If there is no particular need,
FinishingOrder should always be preferred,
because it does not incur any memory overhead.
SubmissionOrder returns results in the order
they appear in the iterable that defines the
calculations. However, it can lead to accumulation
of results if a calculation finishes much slower
then subsequent ones, and may result in an out-
of-memory error (it should be noted that this
overhead is unavoidable and not an
implementation artifact of SubmissionOrder).
On the other hand, a very slow calculation does
not represent a bottleneck for execution because

Computational Crystallography Newsletter (2013). 4, 16-22

subsequent calculations will be started as soon as
ExecutionUnits become idle. Further ordering
classes may be developed as needed. A typical
example is shown on Figure 3.

Infinite sequences

While it is clear that an infinite sequence can
neither be processed in finite time nor would it fit
into finite memory, lazily evaluated infinite
sequences are valuable tools for computing
certain quantities. A very practical example from
crystallography is the implementation of ab initio
direct methods in the program SHELXD
(Sheldrick, 2010). The default setting for SHELXD
is an infinite run with unlimited tries. Each try is
independent, and depends on a random number
from an infinite random number series.
Termination of the job is the responsibility of the
user. In phenix.hyss (Grosse-Kunstleve &
Adams, 2003), manual termination has been
replaced by suitable decision criteria. When either
a suitably good solution has been found or the
user decides to give up, processing the sequence
of Patterson peaks is terminated; the best result is
then selected and refined. Both the infinite
sequence processing from SHELXD and the
graceful termination from phenix.hyss can be
implemented usinga ParallelForIterator. A
suitably initialized random sequence and a
function that performs dual space recycling can be
mapped onto a Manager. Graceful termination
can be implemented with the suspend method of
ParallelForIterator, which simulates that
the end-of-sequence has been reached, and no
more calculations are submitted to the queue
(ParallelForIterator also provides a
resume method to continue processing). Iteration
continues until all currently running calculations
finish. A simple infinite sequence example is
shown in Figure 4.

20

ARTICLES

from mymodule import mycalc

non-parallel code
values = []

for 1 in range(50):
values.append(mycalc(i))

identical parallel code
from libtbx.queuing system utils import scheduling

parallel for = scheduling.ParallelForIterator (
calculations = ((mycalc, (i,), {}) for i in range(50)),
manager = manager,
)
values = []
for (params, handle) in scheduling.SubmissionOrder (parallel for):
try:
result = handle ()

except RuntimeError, e:

(function, args, kwargs) = params
print "Error (mycalc with arguments %s): %s" % (str(args), e)
continue

values.append(result)

parallel list comprehension, no error handling

parallel for = scheduling.ParallelForIterator (
calculations = ((mycalc, (i,), {}) for i in range(50)),
manager = manhager,
)
values = [handle() for (params, handle)
in scheduling.SubmissionOrder(parallel for = parallel for)]
Figure 3

Code example: parallelizing a loop using a Manager and ParallelForIterator. Although more
complex constructs are used, the basic structure (i.e. a single loop) does not change. In addition,
ParallelForIterator canbe used in any Python list expressions and will be evaluated in parallel
(error handling is still possible, but not shown for simplicity).

Computational Crystallography Newsletter (2013). 4, 16-22

21

ARTICLES I

from mymodule import is prime
from libtbx.queuing system utils import scheduling
import itertools

parallel for = scheduling.ParallelForIterator (
calculations = (
(is_prime, (i,), {}) for i in itertools.count(10000)
),
manager = manager,
)
primes = []
for (params, handle) in scheduling.SubmissionOrder(parallel for):
try:

result = handle ()

except RuntimeError, e:

(function, args, kwargs) = params
print "Error (is prime with arguments %s): %s" % (str(args), e)
continue

if result: # number is prime
(function, args, kwargs) = params
primes.append(args[0])
parallel for.suspend()

there may be multiple primes found, but we are only interested in the
lowest
print "The lowest prime number higher than 10000 is %s" % primes[0]

Figure 4

Code example: finding the first prime number above a preset value using parallel code and an infinite
sequence. is_prime is a hypothetical function returning a Boolean value.

References

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B, Davis, I. W., Echols, N., Headd,].]., Hung, L. W,,
Kapral, G.]., Grosse-Kunstleve, R. W.,, McCoy, A. ., Moriarty, N. W,, Oeffner, R., Read, R.],
Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Cryst. D66, 213-
221.

Bunkdczi, G. & Echols, N. (2012). Computational Crystallography Newsletter 3, 37-42.
Grosse-Kunstleve, R. W. & Adams, P. D. (2003). Acta Cryst. D59, 1966-1973.
Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002). J. Appl. Cryst. 35,126-136.

Sheldrick, G. M. (2010). Acta Cryst. D66, 479-485.

Computational Crystallography Newsletter (2013). 4, 16-22 22

ARTICLES I

cctbx tools for transparent parallel job execution

in Python. Il

Convenience functions for the impatient.
Nathaniel Echols®, Gabor Bunkéczi®, and Ralf W. Grosse-Kunstleve®®

“Lawrence Berkeley National Laboratory, Berkeley, CA

bDepartment of Haematology, University of Cambridge, Cambridge, UK

‘Present address: Google Inc. (San Bruno, CA)

Correspondence email: nechols@lbl.gov

Introduction

We have described (Bunkéczi & Echols, 2012,
2013) a set of Python classes for handling parallel
execution of tasks on a multiprocessor system or
managed cluster. This API has the advantage of
being suitable for any situation where parallelism
is desired, and is not necessary limited either to
“embarrassingly paralle]” methods where the

same single function is called repeatedly.
However, this latter case occurs frequently
enough in large applications that it merits its own
treatment, and specialized parallelization
functions that minimize the programming
overhead.

Examples of embarrassingly parallel methods

currently used in Phenix (Adams et al, 2010)
include:

* Multiple MR searches (phaser.MRage), which
were the original motivation for the tools
described in the accompanying article

* Multiple Rosetta rebuilding jobs in MR-Rosetta
(DiMaio et al, 2011)

* Exploration of alternate model-building
strategies (Terwilliger et al, 2007; Terwilliger,
Grosse-Kunstleve, Afonine, Moriarty, Zwart, et
al., 2008)

* Ligand search trials with varying parameters
(Terwilliger et al., 2006)

* Omit map calculation (Terwilliger, Grosse-
Kunstleve, Afonine, Moriarty, Adams, et al,
2008)

* Optimization of the X-ray/restraint weights by
grid search in phenix.refine (Afonine et al,
2011; Afonine et al.,, 2012)

* Validation of multiple models in an ensemble
(mmtbx.validation_summary)

Many other crystallographic software packages
and automation pipelines employ similar
parallelism, including Mr-BUMP (Keegan & Winn,
2008), ARCIMBOLDO (Rodriguez et al, 2009;
Rodriguez et al., 2012), gFit (van den Bedem et al.,

Computational Crystallography Newsletter (2013). 4, 23-27

2009), MR-GRID (Schmidberger et al, 2010), WS-
MR (Stokes-Rees & Sliz, 2010), Xsolve (van den
Bedem et al, 2011), and weight optimization for
DEN refinement (Schroder et al,, 2010; O'Donovan
et al, 2012). Targeted system resources range
from multi-core laptop or desktop computers up
to supercomputers or grid platforms comprising
thousands of CPUs (which are beyond the scope of
this article). Increasingly, a target goal of
automation efforts is to obtain an initial structure
solution at the synchrotron beamline while the
experiment is ongoing (Panjikar et al, 2005),
which also typically requires a high level of
parallelism.

More generally, experienced crystallographers
often operate parallel workflows like these
manually, sometimes with the aid of shell scripts.
In many of these situations, the majority of the
input data remains the same for the individual
jobs and the runtime of each job is expected to be
similar. This essentially reduces the problem to
calling map(function, iterable). For this
purpose we have introduced two parallel map()
implementations in the module 1ibtbx.easy mp,
one based on the tools described in part I, and
another extending the built-in multiprocessing
module.

General-purpose,

parallelism

Many of the examples listed above have runtimes
for individual jobs in the range of minutes to
hours; this makes them suitable for execution
either on a queuing system or a shared-memory
multiprocessor machine. For such applications,
the parallel map function provides access to
both types of resource. Consider the following
simplified example!:

platform-independent

1 This is essentially an abstraction of the code used in the
experimental “Parallel Phaser” GUI, which simply provides a
frontend for running MR searches on a large number of
models in parallel.

23

ARTICLES I

class phaser manager (object)
def init (self, data file)
self.data file = data_ file

def call (self, model)

the actual implementation is elsewhere
return run_ phaser(self.data file, model)

def run_all (data file, models, method="multiprocessing”,
processes=1l, gsub command=None, callback=None)

phaser = phaser manager(data_ file)

from libtbx.easy mp import parallel map

return parallel map(
func=phaser,
iterable=models,
method=method,
processes=processes,
callback=callback,
gsub_command=gsub command)

In this pseudo-code, we are simply running
Phaser MR searches on a list of models, and
returning the list results (whatever they may be)
to the parent function. On Linux systems, the
method argument could instead have been “sge”,
“Isf”, “pbs”, or “condor”; otherwise, the execution
and retrieval of results is completely transparent.

Internally, the function creates as many
scheduling.ExecutionUnit objects as
requested (the processes argument), then

creates a scheduling.Manager object with the
ExecutionUnits, and submits each individual
function call as a separate task. The results are
returned in the same order as the inputs.
Although execution of the main thread blocks
until all tasks have finished, the optional
callback argument specifies a function (or
callable object) to be run each time a result is
retrieved. This is used, for instance, to display the
results of MR searches in the Phenix GUI as they
become available, instead of waiting until the end
of the run.

A few important details must be taken into
account when using the parallel mapping function
libtbx.easy mp.parallel map. First, both the
target function and the iterable must be pickle-
able: this includes most of the essential low-level
C++ objects used in cctbx, including all of the
scitbx.array family classes, the Miller array
(cctbx.miller.array), and the PDB hierarchy
(iotbx.pdb.hierarchy.root). In the example
the data file argument could be either a file
name or a collection of Miller arrays already

Computational Crystallography Newsletter (2013). 4, 23-27

extracted from the file. The models argument
could be either a list of PDB file names, or a list of
PDB hierarchy objects. Similarly, the result objects
must also be pickle-able. Note that since the
passing of data to and from processes on queuing
systems requires the use of intermediate pickle
files, the 1/0 overhead is non-negligible whether
or not the data and model files must be read in by
each process. As noted above, the runtime for each
model should be similar; although this is not
strictly a requirement, it will result in the
maximum speedup with more processes. Finally,
although parallel map can be used for relatively
short tasks (on the order of seconds) in
multiprocessing mode, this is not recommended
for queuing systems.

Except for these limitations, the design of the
target function has no special constraints; it may
be any combination of Python or C++ code and
system calls, and does not necessarily need to be
an object method as shown in the example. It may
even employ additional parallelism, although
some care is required to ensure even allocation of
system resources. It should also be noted that not
all parallelization methods are compatible with
each other. For user-oriented programs where
both multiprocessing and queuing system support
is desired, a 1libtbx.phil scope (Grosse
Kunstleve et al, 2005) containing execution
options (method, processes, commands, etc.) can
be embedded in the application parameters, and
the extracted Python objects passed as a block to
parallel map.

24

ARTICLES

Extending multiprocessing.Pool for greater
flexibility

The parallel map function is optimal for new
applications where the data to be passed between
the parent and the child processes are pickle-able.
(It is also the only method fully supported on
Windows, which has built-in limitations that make
process-level Python parallelism more difficult.)

from libtbx import easy_ mp
import sys

class refine xyz (object)

However, this is not always desirable or
technically feasible, especially where previously
written code must be significantly refactored. A
representative example is the optimization of X-
ray/stereochemistry restraint weights, described
in (Afonine et al, 2011), here greatly simplified to
the following code:

def init (self, model, fmodel, params,

out=sys.stdout,
self.model = model
self.fmodel = fmodel
self.params = params
target weights = [0.1,
trial_results =
fixed_func=self.try weight,
args=target_weights,
processes=nproc)

nproc=1)

0.25,

0.5, 1.0, 2.0,
easy_mp.pool map(

5.0]

self.opt_r free, self.opt_weight, sites_best = \
min(trial results) # pick best R-free

self.fmodel.xray structure.set sites cart(sites_best)
self.fmodel.update xray structure(update_ f calc=True)

def try weight (self, weight)

function defined elsewhere; modifies objects in place
out = StringIO()

minimize_coordinates(
model=self.model,
fmodel=self. fmodel,
weight=weight,
log=out)

sites_cart =

self.fmodel.xray structure.sites_cart()

return (self.fmodel.r free(), weight, sites_cart)

The minimization function requires a complex
collection of objects, including the
mmtbx.f model.manager that handles the
structure factor calculations (and is pickle-able)
and the mmtbx.model .manager that contains not
only the PDB hierarchy but all geometry restraints
(which currently cannot be pickled). To use the
parallel map method, either pickling support
would have to be added to all of the classes
involved or the code would need to be refactored
to regenerate the restraints for the current model
(e.g. as a string of ATOM records) each time
minimize coordinates is called. Either change
involves a significant loss of efficiency for either
the developer or the end user.

Computational Crystallography Newsletter (2013). 4, 23-27

The critical advantage of the pool map method
used in the second example is that it does not have
the pickling requirement for the target function
(although the arguments and results must still be
pickle-able). This exploits a detail of the
implementation of multiprocessing.Process
on Linux and other Unix systems such as MacOS:
new processes are started by calling os.fork(),
which creates a clone process with copy-on-write
memory pages shared by the parent and child
processes. By subclassing the
multiprocessing.Pool object and passing the
fixed func argument to the initializer, all
attributes are inherited by the child process when
forked, after which the process pool's existing

25

ARTICLES I

map() method is called. In many practical
situations the bulk of the memory pages are never
modified by the child processes, and therefore
never duplicated. Therefore fork’s copy-on-write
approach not only avoids the pickling overhead
for the target function, but also makes it possible
to have many child processes even if the parent
process already consumes a large fraction of the
available memory.

Using this method, any existing embarrassingly
parallel for loop can be parallelized with the
addition of a few lines of code. This is used in
several places in phenix.refine and
phenix.den_refine, where near-linear speedups are
achieved for the parallelized loops. The copy-on-
write memory management of the Unix fork()
system call keeps the memory overhead to a
minimum, and since all other objects are shared in
memory, no file I/0 is required. The overhead for
forking a process is minimal, and if the function
arguments (and return values) can be kept small
and simple, pickling these will not have a
significant impact on runtime. For these reasons,
pool map is also suitable for cases where the
individual tasks have runtimes on the order of
seconds (e.g. for the validation of ensemble
models).

Practical considerations
Because libtbx.easy mp is intended to make
parallelization of existing code as easy and non-
invasive as possible, neither of the methods
described here place many restrictions on the
implementation of the mapped function. However,
following several general guidelines should make
the transition easier:

* Keep file I/0 to a minimum - in particular, avoid
any writes to paths or filehandles that may be in
use by other processes. Use local “scratch” disks
whenever possible if running on a queuing
system.

* It is also helpful to keep printed log output to a
minimum; any important information that the
user needs to see should be saved for display
until the result is retrieved in the main process.

* Avoid uncaught exceptions, except where
programmer error is likely to be at fault. Errors
such as an inappropriate input or a failed
calculation should be included in the return
value and handled in the main process.

* If the runtime of the target function on each of

Computational Crystallography Newsletter (2013). 4, 23-27

the arguments is expected to vary and can be
guessed or approximated, the arguments that
are expected to take the longest should be first
in the list.

* For maximum convenience and compatibility,
both methods will simply execute a serial for
loop over all arguments if number of processes
equals 1 or the parallelization method is not
supported (such as easy mp under Windows).
This means that no special application-level
code is required to decide whether or not to use
parallelism.

An additional limitation is that wunlike the

ParallelForIterator described previously

(Bunkoéczi & Echols, 2013), the parallel map()

implementations do not have the option of exiting

early if an acceptable result is found. Therefore
they are only suitable for tasks where all results
need to be collected and analyzed at once.

Finally, we emphasize that these libraries are
designed for end-user applications such as Phenix
that must be as portable as possible. They target
the computing resources available to the typical
crystallographer, ie. multi-core personal
computers and workstations ranging from 2 to 64
CPU cores, up to lab- or department-scale shared
clusters, where the maximum available resources
are expected to be, at most, several hundred
processor cores. Deployment of the application is
intended to require no additional setup or
dedicated resources beyond the optional
availability of one of the supported queuing
systems. It therefore makes several compromises
that limit the scalability, in particular the use of
the file system for execution on a cluster, and it is
not fault-tolerant with regards to outright crashes
or hardware failures. For applications intended to
run on a specific system, or where scalability,
stability, and efficiency across thousands of
processors are essential, a more specialized (but
less portable) platform or API such as MPI or
MapReduce! (Dean & Ghemawat, 2008) should
provide significantly better performance.

Availability and platform support

Any CCTBX version released after January 2013
has the described functions (this is also included

1 A popular open-source implementation, Apache Hadoop
(http://hadoop.apache.org), includes Python support, and
there does not appear to be any obstacle to using Hadoop as
an additional backend in the framework we describe.

26

ARTICLES I

in Phenix build 1282 or newer). Support for (it may still be used on Windows, but will run
queuing systems is effectively limited to Linux; the serially). Additional examples of usage are
pool map function is limited to Linux and MacOS available by request from the authors.

References

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B, Davis, I. W., Echols, N., Headd, J. J., Hung, L. W.,
Kapral, G.]J., Grosse-Kunstleve, R. W., McCoy, A.]., Moriarty, N. W., Oeffner, R.,, Read, R.],
Richardson, D. C, Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Crystallogr D 66,
213-221.

Afonine, P. V., Echols, N., Grosse Kunstleve, R. W., Moriarty, N. W. & Adams, P. D. (2011). Computational
Crystallography Newsletter 2,99-103.

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd,].], Moriarty, N. W., Mustyakimov, M. W.,
Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H. & Adams, P. D. (2012). Acta Crystallogr D 68, in
press.

Bunkdczi, G. & Echols, N. (2012). Computational Crystallography Newsletter 3, 37-42.

Bunkdczi, G. & Echols, N. (2013). Computational Crystallography Newsletter 4, (in press).

Dean, J. & Ghemawat, S. (2008). Communications of the ACM 51, 107-113.

DiMaio, F., Terwilliger, T. C., Read, R.], Wlodawer, A., Oberdorfer, G., Wagner, U., Valkov, E., Alon, A,
Fass, D., Axelrod, H. L., Das, D., Vorobiev, S. M., Iwai, H., Pokkuluri, P. R. & Baker, D. (2011). Nature
473,540-543.

Grosse Kunstleve, R. W., Afonine, P. V., Sauter, N. K. & Adams, P. D. (2005). Newsletter of the IUCr
Commission on Crystallographic Computing 5, 69-91.

Keegan, R. M. & Winn, M. D. (2008). Acta Crystallogr D Biol Crystallogr 64, 119-124.

O'Donovan, D.], Stokes-Rees, 1., Nam, Y., Blacklow, S. C,, Schroder, G. F., Brunger, A. T. & Sliz, P. (2012).
Acta Crystallogr D Biol Crystallogr 68, 261-267.

Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. (2005). Acta Crystallogr D Biol
Crystallogr 61, 449-457.

Rodriguez, D., Sammito, M., Meind], K., de Ilarduya, I. M., Potratz, M., Sheldrick, G. M. & Uson, 1. (2012).
Acta Crystallogr D Biol Crystallogr 68, 336-343.

Rodriguez, D. D., Grosse, C., Himmel, S., Gonzalez, C., de Ilarduya, . M., Becker, S., Sheldrick, G. M. & Uson,
[. (2009). Nat Methods 6, 651-653.

Schmidberger,]. W., Bate, M. A,, Reboul, C. F,, Androulakis, S. G., Phan, J. M., Whisstock,]. C., Goscinski, W.
], Abramson, D. & Buckle, A. M. (2010). Plos One 5, e10049.

Schroder, G. F., Levitt, M. & Brunger, A. T. (2010). Nature 464, 1218-U1146.

Stokes-Rees, . & Sliz, P. (2010). Proc Natl Acad Sci US A 107,21476-21481.

Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Adams, P. D., Moriarty, N. W., Zwart, P., Read, R.
J., Turk, D. & Hung, L. W. (2007). Acta Crystallogr D 63, 597-610.

Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Adams, P. D., Read, R.]., Zwart,
P. H. & Hung, L. W. (2008). Acta Crystallogr D 64, 515-524.

Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H,, Hung, L. W., Read,
R.]. & Adams, P. D. (2008). Acta Crystallogr D 64, 61-69.

Terwilliger, T. C., Klei, H.,, Adams, P. D., Moriarty, N. W. & Cohn,]J. D. (2006). Acta Crystallogr D Biol
Crystallogr 62,915-922.

van den Bedem, H., Dhanik, A., Latombe, |J. C. & Deacon, A. M. (2009). Acta Crystallogr D Biol Crystallogr
65,1107-1117.

van den Bedem, H., Wolf, G., Xu, Q. & Deacon, A. M. (2011). Acta Crystallogr D Biol Crystallogr 67, 368-
375.

Computational Crystallography Newsletter (2013). 4, 23-27 27

